| 研究生: |
王文佑 Wang, Wen-Yu |
|---|---|
| 論文名稱: |
優化接觸電阻工藝與利用六方氮化硼提升二硒化鎢場效電晶體之介面特性 Interface and Contact Engineering in WSe₂ Field-Effect Transistors Using hBN Insertion Layers and Self-Aligned Top Gates |
| 指導教授: |
路克史密斯
Smith, Luke |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 二硒化鎢 、場效電晶體 、介面工程 、金屬接觸 、六方氮化硼 |
| 外文關鍵詞: | WSe₂, Two-dimensional Field-Effect Transistor, interface engineering, metal contact fabrication, hBN |
| 相關次數: | 點閱:21 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維材料在新世代電子元件中具有極大潛力,但降低接觸電阻與抑制高介電常數材料所引入的介面陷阱,仍是提升二維 TMD 元件效能的關鍵挑戰,因此接觸與介面工程變得至關重要。
本研究針對 WSe₂ 為通道材料的場效電晶體(FET),探討介面與接觸工程策略。為改善閘極控制與降低介面陷阱,我們在 WSe₂ 與高介電常數 HfO₂ 介電層之間插入數奈米厚的 hBN 緩衝層。電性量測結果顯示,hBN 插入可大幅降低次臨界擺幅(SS)與介面陷阱密度(Dit),顯示其具有效的陷阱鈍化能力並提升電場調控效果。
在接觸工程方面,透過比較 10 nm 與 20 nm 的 Cr 緩衝層,我們發現兩者 SS 表現幾乎相同,代表 10 nm Cr 已足以緩衝高能金屬粒子對 WSe₂ 的衝擊。我們也比較了分段(stepwise)與連續金屬沉積的差異,結果顯示熱累積對元件表現影響有限。進一步降低鍍金速率(由 0.38 nm/min 降至 0.13 nm/min)則能有效減少表面損傷,SS 由約 3571 mV/dec 降至 296 mV/dec,電性顯著提升。
整體而言,本研究結果提供了接觸製程的具體優化方向,並為高-κ介電層中二維材料元件的製作與效能提升奠定基礎。
Two-dimensional materials hold great promise for next-generation electronics; however, reducing contact resistance and mitigating interface traps introduced by high-κ dielectrics remain critical challenges, making contact and interface engineering essential for achieving high-performance 2D FETs.
This study investigates interface and contact engineering strategies to enhance the performance of WSe₂‑based field‑effect transistors (FETs). To improve gate control and suppress interface traps, a few‑nanometer‑thick hexagonal boron nitride (hBN) layer was inserted between the WSe₂ channel and a high‑κ HfO₂ gate dielectric. Electrical measurements demonstrate that hBN insertion yields a pronounced improvement in subthreshold swing (SS) and reduces interface trap density (Dᵢₜ) by over an order of magnitude, confirming effective trap passivation and stronger electrostatic control.
In the contact engineering study, we evaluated the role of a Cr buffer layer by comparing devices with 10 nm versus 20 nm Cr beneath a PdAu contact. Both configurations showed nearly identical SS, this suggests that a 10 nm Cr layer is sufficiently thick to serve as an effective buffer, alleviating the strong interaction between high-energy atoms and the WSe₂ surface. To probe potential thermal effects, we compared segmented (stepwise) deposition against continuous deposition and observed negligible differences in device metrics, suggesting thermal accumulation is minimal under our conditions. Crucially, reducing the metal deposition rate from 0.38 nm/min to 0.13 nm/min suppressed deposition‑induced damage, leading to a reduction in SS from approximately 3571 mV/dec to about 296 mV/dec.
These findings provide valuable insights into the contact deposition processes used in our laboratory and help us understand methods which can be used to achieve better switching in our devices, as well as providing a starting point to understand how performance in devices with high-κ dielectrics can be enhanced as well as the challenges faced in fabricating these devices.
1. Borkar, S. & Chien, A. A. The future of microprocessors. Commun. ACM 54, 67–77 (2011).
2. Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).
3. Zheng, W. et al. The origin and mitigation of defects induced by metal evaporation in 2D materials. Mater. Sci. Eng. R Rep. 160, Article 100831 (2024).
4. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).
5. Ngo, T. D. et al. Self-aligned top-gate structure in high-performance 2D p-FETs via van der Waals integration and contact spacer doping. Nano Lett. 23, 11345–11352 (2023).
6. Lau, C. S. et al. Dielectrics for two-dimensional transition-metal dichalcogenide applications. ACS Nano 17, 14934–14966 (2023).
7. K. S. Novoselov et al.,Electric Field Effect in Atomically Thin Carbon Films.Science306,666-669(2004).
8. Wang, Y., Sarkar, S., Yan, H. et al. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat Electron 7, 638–645 (2024).
9. Chang, C. et al. The impact of interface traps on the subthreshold characteristics of III–V vertical nanowire tunnel field-effect transistors. J. Appl. Phys. 137, 135706 (2025).
10. Kong, L. et al. Precisely tailoring WSe₂ polarity via van der Waals bismuth–gold modulated contact. Nano Lett. 24, 10949–10956 (2024).
11. Pan, Y.-Y. et al. Electronic impact of high-energy metal deposition on ultrathin oxide semiconductors. Nano Lett. 25, 2655–2661 (2025).
12. Wang, W. et al. Performance improvement of GaN-based laser diode using Pd/Ni/Au metallization Ohmic contact. Coatings 9, 291 (2019)
13. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
14. Kim, J. H. et al. Room temperature negative differential resistance with high peak current in MoS₂/WSe₂ heterostructures. Nano Lett. 24, 2561–2566 (2024).
15. Na, Y. S. et al. Modulation of optical and electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment. 2D Mater. 8, 045041 (2021).
16. Zhou, L. et al. Leakage current by Poole–Frenkel emission in Pt Schottky contacts on β-Ga₂O₃ grown by edge-defined film-fed growth. ECS J. Solid State Sci. Technol. 8, Q3054 (2019).
17. Huang, X. et al. 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 6, 51 (2022).
18. Gong, C. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 4, 1700231 (2017).
19. Zheng, F. et al. Continue the scaling of electronic devices with transition metal dichalcogenide semiconductors. Nano Lett. 25, 3683–3691 (2025).
20. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
21. Geim, A. K. et al. Van der Waals heterostructures. Nature 499, 419–425 (2013).
22. Pariari, D. et al. Nature and origin of unusual properties in chemically exfoliated 2D MoS₂. APL Mater. 8, 040909 (2020).
23. Wang, P. et al. Van der Waals heterostructures by design: from 1D and 2D to 3D. Matter 4, 552–581 (2021).
24. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
25. Radisavljevic, B. et al. Single-layer MoS₂ transistors. Nat. Nanotechnol. 6, 147–150 (2011).
26. Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2006).
27. Wilk, G. D. et al. High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).
28. Radisavljevic, B. et al. Single-layer MoS₂ transistors. Nat. Nanotechnol. 6, 147–150 (2011).
29. Zhao, P. et al. Probing interface defects in top-gated MoS₂ transistors with impedance spectroscopy. ACS Appl. Mater. Interfaces 9, 23791–23800 (2017).
30. Xia, P. et al. Impact and origin of interface states in MOS capacitor with monolayer MoS₂ and HfO₂ high-k dielectric. Sci. Rep. 7, 40669 (2017).
31. Sajjad, R. N. et al. Trap assisted tunneling and its effect on subthreshold swing of tunnel FETs. IEEE Trans. Electron Devices 63, 4380–4387 (2016).
32. Strand, J. et al. Dielectric breakdown in HfO₂ dielectrics: using multiscale modeling to identify the critical physical processes involved in oxide degradation. J. Appl. Phys. 131, 234501 (2022).
33. Hueting, R. J. E. et al. On device architectures, subthreshold swing, and power consumption of the piezoelectric field-effect transistor (π-FET). IEEE J. Electron Devices Soc. 3, 149–156 (2015).
34. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices, 3rd edn. (Wiley, 2007).
35. Nicollian, E. H., & Brews, J. R. MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, 1982.
36. Radisavljevic, B. et al. Single-layer MoS₂ transistors. Nat. Nanotechnol. 6, 147–150 (2011).
37. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
38. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
39. Das, S. et al. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014).
40. Miao, J. et al. Recent progress in contact engineering of field-effect transistors based on two-dimensional materials. Nanomaterials 12, 3845 (2022).
41. F. Giannazzo et al., “Impact of contact resistance on the electrical properties of MoS₂ transistors at practical operating temperatures,” Beilstein J. Nanotechnol., vol. 8, pp. 254–263, Jan. 2017.
42. C. D. English, V. E. Dorgan, V. Saraswat, and E. Pop, “Improved Contacts to MoS₂ Transistors by Ultra High Vacuum Metal Deposition,” Nano Letters, vol. 16, no. 6, pp. 3824–3830, Jun. 2016.
43. C. D. English et al., “Approaching ohmic contacts to MoS₂ with a high work function metal,” Nano Letters, vol. 16, no. 6, pp. 3824–3830, Jun. 2016.
44. G. Ghibaudo, “New method for the extraction of MOSFET parameters,” Electronics Letters, vol. 24, no. 9, pp. 543–545, May 1988.
45. Pang, C.-S. et al. Mobility extraction in 2D transition metal dichalcogenide devices—avoiding contact resistance implicated overestimation. Small 17, e2100940 (2021).
46. Das, S. et al. High performance multilayer MoS₂ transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).
47. Bennett, R. K. A. et al. Mobility and threshold voltage extraction in transistors with gate-voltage-dependent contact resistance. npj 2D Mater. Appl. 9, 13 (2025).
48. Cho, S. et al. Recent progress on mobility evaluation of 2D semiconductors: Challenges and opportunities. npj 2D Mater. Appl. 8, 41 (2024).
49. Chang, H.-Y. et al. On the mobility and contact resistance evaluation for transistors based on MoS₂ or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014).