簡易檢索 / 詳目顯示

研究生: 林敬翔
Lin, Ching-Hsiang
論文名稱: 以HELIOS模擬空載光達點雲密度資料
ALS point density simulation by HELIOS
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 空載光達點雲密度光達模擬空載光達掃瞄飛航規劃
外文關鍵詞: Airborne Laser Scanning, simulation, HELIOS, ALS flight planning, point density
相關次數: 點閱:114下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    空載光達為生產數值高程模型(Digital Elevation Model, DEM)之主要來源。DEM經常運用於變形監測、防災規劃等等方面,因此DEM的精度品質可謂相當重要。其品質與空載光達測製之點雲資料為正相關。在空載光達掃瞄作業之飛航規劃階段,地形平緩地區之點雲密度的估計可以透過一些數學式即可運算而得。然而,在地形起伏較大的區域,點雲密度的估計一直都是一個挑戰。因此,本研究透過光達點雲模擬程式(Heidelberg LiDAR Operations Simulator, HELIOS)進行點雲密度模擬。模擬的地形模型採用由內政部提供之台灣20公尺網格數值地形模型資料。當點雲密度模擬於大範圍之測區進行模擬時,需花費大量的運算時間。由於飛航規劃階段需要在有限的時間之下完成,以避免影響後續掃瞄作業安排,因此模擬運算的時間需要縮短。本研究提出利用降低模擬程式中的雷射脈衝頻率以縮短運算時間,模擬之點雲密度會同時下降。故需要進行點雲密度值的補正。本研究將以八條航線以及規劃之飛航參數進行模擬,並且探討縮短運算時間所帶來之影響。最後將進行加快運算速度的效益探討。
    關鍵字:空載光達、點雲密度、光達模擬、空載光達掃瞄飛航規劃

    Abstract

    Airborne Laser Scanning (ALS) is commonly used to generate the Digital Elevation Model (DEM). The important information such as deformation monitoring and disaster reduction planning can be derived from the DEM. The quality of DEM is positively correlated to the density of the point cloud. In flat terrain, the point density can be estimated by using the simple equation as compared to the complicated terrain, the estimation of the point density is much more complex through the equations. Therefore, this research is proposed to simulate point density through a laser scanning simulator, namely the Heidelberg LiDAR Operations Simulator (HELIOS). A 20-meter Taiwan DEM model of Taiwan was employed for HELIOS simulation. However, computation time becomes a critical issue when the ALS survey covers a large area, i.e., a large portion of Taiwan Island. In order to reduce the simulation time, the downsampling process was conducted by reducing the pulse frequency in HELIOS which was followed by compensating for the reduction factor. The results have demonstrated that different parameter settings of the scanning flight lines with different downsampling rate was used to explain the effect of downsampling process. Finally, the effect of the simulation time was tested.
    KEYWORDS: Airborne Laser Scanning; simulation; HELIOS;ALS flight planning; point density

    Table of contents Abstract I 中文摘要 III Acknowledgement IV Table of contents V List of Figures VII List of Tables X Chapter 1. Introduction 1 Chapter 2. Materials and Methods 6 2.1. Heidelberg LiDAR Operations Simulator (HELIOS) 6 2.2. Study area and ALS dataset 9 2.3. Methods 12 2.3.1 Point density calculation 12 2.3.2 Point density simulation with downsampling technique 12 2.3.3 Evaluation of downsampling technique for point density simulation 18 2.3.4 Accuracy assessment 23 Chapter 3. Results 24 3.1. Point density simulation results of the virtual scenery 24 3.2. Point density simulation results of 20-meter Taiwan DEM 31 3.2.1 Experiment in the flat plain area 31 3.2.2 Experiment in the varying terrain 36 3.3. Comparison between simulation and reference data 41 3.4. Point density estimation 56 3.5. Computation time 61 Chapter 4. Conclusions 68 Reference 72

    Bechtold, S., Höfle, B., 2016. HELIOS: A multi-purpose LiDAR simulation framework for research, planning and training of laser scanning operating with airborne, ground-based mobile and stationary platforms. ISPRS Annals of Photogrammetry, Remote Sensing Spatial Information Sciences 3.

    Charles, J., Jassi, P., Ananth, N.S., Sadat, A., Fedorova, A., 2009. Evaluation of the Intel® Core™ i7 Turbo Boost feature, 2009 IEEE International Symposium on Workload Characterization (IISWC). IEEE, pp. 188-197.
    Forlani, G., Nardinocchi, C., 2007. Adaptive filtering of aerial laser scanning data. 36, 130-135.

    Habib, A., Ghanma, M., Morgan, M., Al-Ruzouq, R., 2005. Photogrammetric and LiDAR data registration using linear features. Photogrammetric Engineering Remote Sensing 71, 699-707.

    Intel®, 2015. Intel® Turbo Boost Technology Monitor End of Support. Intel®.

    Kay, S., 2017. Creates an OBJ mesh from a DEM.

    Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing 53, 193-203.

    Kukko, A., Hyyppä, J., 2009. Small-footprint laser scanning simulator for system validation, error assessment, and algorithm development. Photogrammetric Engineering & Remote Sensing 75, 1177-1189.

    Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography 32, 31-49.
    Lohani, B., Mishra, R., 2007. Generating LiDAR data in laboratory: LiDAR simulator. Int. Arch. Photogramm. Remote Sens 52, 12-14.

    Lovell, J., Jupp, D., Newnham, G., Coops, N., Culvenor, D., 2005. Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. Forest Ecology and Management 214, 398-412.

    Petroselli, A., 2012. LIDAR data and hydrological applications at the basin scale. GIScience & Remote Sensing 49, 139-162.

    Petzold, B., Reiss, P., Stössel, W., 1999. Laser scanning—surveying and mapping agencies are using a new technique for the derivation of digital terrain models. ISPRS Journal of Photogrammetry and remote Sensing 54, 95-104.

    Raber, G.T., Jensen, J.R., Hodgson, M.E., Tullis, J.A., Davis, B.A., Berglund, J., 2007. Impact of LiDAR nominal post-spacing on DEM accuracy and flood zone delineation. Photogrammetric engineering remote sensing 73, 793-804.
    Reutebuch, S.E., McGaughey, R.J., Andersen, H.-E., Carson, W.W., 2003. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Canadian journal of remote sensing 29, 527-535.

    Shan, J., Toth, C.K., 2018. Topographic laser ranging and scanning: principles and processing. CRC press.

    Xie, Z., Pearlstine, L., Gawlik, D.E., 2012. Developing a Fine-Resolution Digital Elevation Model to Support Hydrological Modeling and Ecological Studies in the Northern Everglades. GIScience remote sensing 49, 664-686.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE