| 研究生: |
王致凱 Wang, Zhi-Kai |
|---|---|
| 論文名稱: |
雙輸出幾丁聚醣電紡奈米纖維及其電漿合成表面固定的銀奈米粒子 Dual-Supplied Electrospinning of Chitosan Nanofibers with Plasma-Synthesized and Surface-Immobilized Silver Nanoparticles |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 電紡絲 、奈米纖維 、幾丁聚醣 、電漿處理 、銀奈米顆粒 、抗菌測試 |
| 外文關鍵詞: | electrospinning, nanofibers, chitosan, plasma treatment, silver nanoparticles, antibacterial test |
| 相關次數: | 點閱:171 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用兩種不同雙軸輸出電紡絲製程製備電漿還原銀奈米顆粒固定於表面的幾丁聚醣奈米纖維。首先,雙輸出單軸電紡絲製程是將幾丁聚醣與交聯劑兩溶液分別配置,兩溶液在從針頭擠出之前相互混和的電紡絲製程。第二種雙輸出同軸電紡絲製程使用實驗室製作的同軸針頭,內針頭輸入幾丁聚醣溶液,外針頭輸入聚氧化乙烯、交聯劑和銀前驅物。本實驗謹慎地研究電紡絲製程,結果指出,經過氬電漿處理轟擊後,幾丁聚醣奈米纖維直徑約為135奈米,銀前驅物和硝酸銀還原成銀奈米顆粒並固定於幾丁聚醣纖維表面。抗水性測試結果顯示幾丁聚醣奈米纖維有良好機械性質,銀奈米顆粒也穩固的在奈米纖維的表面,接下來在抗菌測試是以過濾的方法研究,電紡奈米纖維抗菌過濾的結果顯示,纖維表面固定銀奈米顆粒數量與抗菌性呈正比關係。
Plasma-synthesized silver nanoparticles (Ag NPs) were immobilized on the surface of chitosan-based nanofibers fabricated by two kinds of dual-supplied electrospinning processes. In the first fabrication approach, the dual-supplied electrospinning was conducted by two flows that carried the chitosan and the crosslinking agent separately. The two flows were mixed right before the ejection of the electrospinning solutions. The second approach involved the use of a lab-made co-axial nozzle that constructed the chitosan nanofiber cores and the poly(ethylene oxide) (PEO) outer sheath which also carried the crosslinking agent and the silver precursor. Electrospinning processes were carefully investigated in this research project. The resulting chitosan nanofibers with an average fiber diameter as small as about 135 nm were then treated with the argon plasma bombardment. Silver precursors, the silver nitrate, within the chitosan nanofibers were converted to metallic Ag NPs, which were immobilized on the surface of these nanofibers. Water resistance confirmed these robust chitosan nanofibers, as well as the stabilities of surface-immobilized Ag NPs. Following antibacterial tests based on the water filtration apparatus were investigated. And the antibacterial performance of these electrospun chitosan nanofibers were proportionally enhanced by the population of the surface-immobilized Ag NPs.
1. Chronakis, I. S., Novel Nanocomposites and Nanoceramics Based on Polymer Nanofibers Using Electrospinning Process—a Review. Journal of Materials Processing Technology 2005, 167 (2-3), 283-293.
2. Teo, W. E.; Ramakrishna, S., A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17 (14), R89-R106.
3. Schiffman, J. D.; Schauer, C. L., A Review: Electrospinning of Biopolymer Nanofibers and Their Applications. Polymer Reviews 2008, 48 (2), 317-352.
4. Agarwal, S.; Greiner, A.; Wendorff, J. H., Electrospinning of Manmade and Biopolymer Nanofibers-Progress in Techniques, Materials, and Applications. Advanced Functional Materials 2009, 19 (18), 2863-2879.
5. Li; F.B, Photocatalytic Properties of Gold/Gold Ion-Modified Titanium Dioxide for Wastewater Treatment. Applied Catalysis A: General 2002, 228(1-2).
6. Kriegel, C.; Arecchi, A.; Kit, K.; McClements, D. J.; Weiss, J., Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Critical reviews in food science and nutrition 2008, 48 (8), 775-97.
7. Son, W. K.; Youk, J. H.; Park, W. H., Preparation of Ultrafine Oxidized Cellulose Mats Via Electrospinning. Biomacromolecules 2003, 5, 197-201.
8. P, Q.; SHARMA, U.; MIKOS, A. G., Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. TISSUE ENGINEERING 2006, 12.
9. Pillai, C. K. S.; Paul, W.; Sharma, C. P., Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Progress in Polymer Science 2009, 34 (7), 641-678.
10. Rinaudo, M., Chitin and Chitosan: Properties and Applications. Progress in Polymer Science 2006, 31 (7), 603-632.
11. Krishna Rao, K. S. V.; Ramasubba Reddy, P.; Lee, Y.-I.; Kim, C., Synthesis and Characterization of Chitosan–Peg–Ag Nanocomposites for Antimicrobial Application. Carbohydrate polymers 2012, 87 (1), 920-925.
12. Geng, X.; Kwon, O. H.; Jang, J., Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution. Biomaterials 2005, 26 (27), 5427-32.
13. Jayakumar, R.; Prabaharan, M.; Nair, S. V.; Tamura, H., Novel Chitin and Chitosan Nanofibers in Biomedical Applications. Biotechnology advances 2010, 28 (1), 142-50.
14. Pakravan, M.; Heuzey, M.-C.; Ajji, A., A Fundamental Study of Chitosan/Peo Electrospinning. Polymer 2011, 52 (21), 4813-4824.
15. Desai, K.; Kit, K.; Li, J.; Michael Davidson, P.; Zivanovic, S.; Meyer, H., Nanofibrous Chitosan Non-Wovens for Filtration Applications. Polymer 2009, 50 (15), 3661-3669.
16. Moghe, A. K.; Gupta, B. S., Co‐Axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polymer Reviews 2008, 48 (2), 353-377.
17. Yu, J. H.; Fridrikh, S. V.; C, R. G., Production of Submicrometer Diameter Fibers by Twofluid Electrospinning. Advanced Materials 2004, 15, 1562-1566.
18. Sun, Z.; Zussman, E.; Yarin, A. L.; H, W. J.; Greiner, A., Compound Core Shell Polymer Nanofibers by Co-Electrospinnig. advanced Materials 2003, 15, 1929-1932.
19. Sharma, V. K.; Yngard, R. A.; Lin, Y., Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Advances in colloid and interface science 2009, 145 (1-2), 83-96.
20. Marambio-Jones, C.; Hoek, E. M. V., A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. Journal of Nanoparticle Research 2010, 12 (5), 1531-1551.
21. Potara, M.; Jakab, E.; Damert, A.; Popescu, O.; Canpean, V.; Astilean, S., Synergistic Antibacterial Activity of Chitosan-Silver Nanocomposites on Staphylococcus Aureus. Nanotechnology 2011, 22 (13), 135101.
22. Gulrajani, M. L.; Gupta, D.; Periyasamy, S.; Muthu, S. G., Preparation and Application of Silver Nanoparticles on Silk for Imparting Antimicrobial Properties. Journal of Applied Polymer Science 2008, 108 (1), 614-623.
23. Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F., Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. Journal of Nanoparticle Research 2008, 10 (8), 1343-1348.
24. Hang, A. T.; Tae, B.; Park, J. S., Non-Woven Mats of Poly(Vinyl Alcohol)/Chitosan Blends Containing Silver Nanoparticles: Fabrication and Characterization. Carbohydrate polymers 2010, 82 (2), 472-479.
25. Shameli, K.; Bin Ahmad, M.; Zargar, M.; Yunus, W. M.; Ibrahim, N. A.; Shabanzadeh, P.; Moghaddam, M. G., Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and Their Antibacterial Activity. International journal of nanomedicine 2011, 6, 271-84.
26. Chun, J. Y.; Kang, H. K.; Jeong, L.; Kang, Y. O.; Oh, J. E.; Yeo, I. S.; Jung, S. Y.; Park, W. H.; Min, B. M., Epidermal Cellular Response to Poly(Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles. Colloids and surfaces. B, Biointerfaces 2010, 78 (2), 334-42.
27. Li, W.; Wang, J.; Chi, H.; Wei, G.; Zhang, J.; Dai, L., Preparation and Antibacterial Activity of Polyvinyl Alcohol/Regenerated Silk Fibroin Composite Fibers Containing Ag Nanoparticles. Journal of Applied Polymer Science 2012, 123 (1), 20-25.
28. Shameli, K.; Ahmad, M. B.; Yunus, W. M.; Rustaiyan, A.; Ibrahim, N. A.; Zargar, M.; Abdollahi, Y., Green Synthesis of Silver/Montmorillonite/Chitosan Bionanocomposites Using the Uv Irradiation Method and Evaluation of Antibacterial Activity. International journal of nanomedicine 2010, 5, 875-87.
29. Hong, K. H.; Park, J. L.; Sul, I. H.; Youk, J. H.; Kang, T. J., Preparation of Antimicrobial Poly(Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles. Journal of Polymer Science Part B: Polymer Physics 2006, 44 (17), 2468-2474.
30. Lala, N. L.; Ramaseshan, R.; Bojun, L.; Sundarrajan, S.; Barhate, R. S.; Ying-Jun, L.; Ramakrishna, S., Fabrication of Nanofibers with Antimicrobial Functionality Used as Filters: Protection against Bacterial Contaminants. Biotechnology and bioengineering 2007, 97 (6), 1357-65.
31. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16 (10), 2346-53.
32. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16 (10), 2346-53.
33. Foest, R.; Schmidt, M.; Becker, K., Microplasmas, an Emerging Field of Low-Temperature Plasma Science and Technology. International Journal of Mass Spectrometry 2006, 248 (3), 87-102.
34. Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P., Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009, 10 (9), 2351-78.
35. Wanichapichart, P.; Sungkum, R.; Taweepreda, W.; Nisoa, M., Characteristics of Chitosan Membranes Modified by Argon Plasmas. Surface and Coatings Technology 2009, 203 (17-18), 2531-2535.
36. Silva, S. S.; Luna, S. M.; Gomes, M. E.; Benesch, J.; Pashkuleva, I.; Mano, J. F.; Reis, R. L., Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular bioscience 2008, 8 (6), 568-76.
37. Hsu, S. H.; Lin, C. H.; Tseng, C. S., Air Plasma Treated Chitosan Fibers-Stacked Scaffolds. Biofabrication 2012, 4 (1), 015002.
38. Harry, J. E., Plasma, an Overview. in Introduction to Plasma Technology. Wiley-VCH Verlag GmbH & Co. KGaA 2010, 1-13.
39. Bogaerts, A.; Neyts, E.; Gijbels, R.; Mullen, J. v. d., Gas Discharge Plasmas and Their Applications. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57, 609-658.
40. Grill, A., Cold Plasma in Materials Fabrication : From Fundamentals to Applications. Piscataway, N.J.: IEEE Press. 1994.
41. Chua, P. K.; Chena, J. Y.; Wanga, L. P.; Huangb, N., Plasma-Surface Modification of Biomaterials. Materials Science and Engineering: R: Reports 2002, 36, 143-206.
42. Nitschke, M., Plasma Modification of Polymer Surfaces and Plasma Polymerization 64 Polymer Surfaces and Interfaces. M. Stamm, Editor. Springer Berlin Heidelberg 2008, 203-214.
43. Yoon, K.; Hsiao, B. S.; Chu, B., Functional Nanofibers for Environmental Applications. Journal of Materials Chemistry 2008, 18 (44), 5326.
44. Wang, Z.; Zhao, C.; Pan, Z., Porous Bead-on-String Poly(Lactic Acid) Fibrous Membranes for Air Filtration. Journal of colloid and interface science 2015, 441, 121-9.
45. Homaeigohar, S.; Elbahri, M., Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials 2014, 7 (2), 1017-1045.
46. Zhang, S.; Shim, W. S.; Kim, J., Design of Ultra-Fine Nonwovens Via Electrospinning of Nylon 6: Spinning Parameters and Filtration Efficiency. Materials & Design 2009, 30 (9), 3659-3666.
47. Patanaik, A.; Jacobs, V.; Anandjiwala, R. D., Performance Evaluation of Electrospun Nanofibrous Membrane. Journal of Membrane Science 2010, 352 (1-2), 136-142.
48. Yun, K. M.; Hogan, C. J.; Matsubayashi, Y.; Kawabe, M.; Iskandar, F.; Okuyama, K., Nanoparticle Filtration by Electrospun Polymer Fibers. Chemical Engineering Science 2007, 62 (17), 4751-4759.
49. Liu, B.; Zhang, S.; Wang, X.; Yu, J.; Ding, B., Efficient and Reusable Polyamide-56 Nanofiber/Nets Membrane with Bimodal Structures for Air Filtration. Journal of colloid and interface science 2015, 457, 203-11.
50. Ma, Z.; Kotaki, M.; Ramakrishna, S., Electrospun Cellulose Nanofiber as Affinity Membrane. Journal of Membrane Science 2005, 265 (1-2), 115-123.
51. Sinha-Ray, S.; Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B., Application of Solution-Blown 20–50nm Nanofibers in Filtration of Nanoparticles: The Efficient Van Der Waals Collectors. Journal of Membrane Science 2015, 485, 132-150.
52. Mokhena, T. C., A Review on Electrospun Bio-Based Polymers for Water Treatment. Express Polymer Letters 2015, 9 (10), 839-880.
53. Chen, Q.; Yu, P.; Huang, W.; Yu, S.; Liu, M.; Gao, C., High-Flux Composite Hollow Fiber Nanofiltration Membranes Fabricated through Layer-by-Layer Deposition of Oppositely Charged Crosslinked Polyelectrolytes for Dye Removal. Journal of Membrane Science 2015, 492, 312-321.
54. Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B., Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification. Biomacromolecules 2011, 12 (4), 970-6.
55. Wang, X.; Yeh, T.-M.; Wang, Z.; Yang, R.; Wang, R.; Ma, H.; Hsiao, B. S.; Chu, B., Nanofiltration Membranes Prepared by Interfacial Polymerization on Thin-Film Nanofibrous Composite Scaffold. Polymer 2014, 55 (6), 1358-1366.
56. Ma, H.; Burger, C.; Hsiao, B. S.; Chu, B., Fabrication and Characterization of Cellulose Nanofiber Based Thin-Film Nanofibrous Composite Membranes. Journal of Membrane Science 2014, 454, 272-282.
57. Annur, D., Plasma- Synthesized Silver Nanoparticles Embedded in the Electrospun Chitosan Nanofibers. NCKU 2012.
58. Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Lim, T. C.; Z. Ma, An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Company 2005.
59. Stuart, B., Infrared Spectroscopy : Fundamentals and Applications. Analytical techniques in the sciences. Chichester, West Sussex, England ; Hoboken, NJ: J. Wiley. xv 2004.
60. Watts, J. F.; Wolstenholme, J., An Introduction to Surface Analysis by Xps and Aes. Chichester: J. Wiley 2003.
61. Competitive Adsorption of Ag (I) and Cu (Ii) by Tripolyphosphate. Journal of Applied Polymer Science 2015, 42717.
62. Chen, G.; Fang, D.; Wang, K.; Nie, J.; Ma, G., Core-Shell Structure Peo/Cs Nanofibers Based on Electric Field Induced Phase Separation Via Electrospinning and Its Application. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (19), 2298-2311.
校內:2026-02-05公開