簡易檢索 / 詳目顯示

研究生: 歐東哲
Ou, Dung-Je
論文名稱: 柴油引擎於進氣處使用輔助燃料噴射之運轉性能及排氣污染效應之研究
Study of Operating Performance and Exhaust Emissions for Diesel Engines with Auxiliary Fuels Injected at the inlet port
指導教授: 吳鴻文
Wu, Horng Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 實驗分析燃燒性能密閉式循環柴油引擎系統均質壓燃式引擎
外文關鍵詞: combustion performance, close cycle diesel engine, homogeneous charge compression ignition, experimental analysis
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了環保需求以及面對能源危機,進行能源系統的改良工作刻不容緩。柴油引擎乃是提供多數陸上以及海上動力的來源。如果將排放廢氣中的二氧化碳濃度降低,柴油引擎就可以形成一個密閉循環系統(CCDE)。均質壓燃方式(HCCI)可以提高直噴式柴油引擎的熱效率與降低污染物的生成。如果將HCCI和CCDE兩大系統結合,利用HCCI方式能夠降低污染物的特性,來提升CCDE系統的運轉壽命。
    本文針對KUBOTA RK-125 型之單缸直噴式柴油引擎進行實驗,利用不同的實驗參數,進行不同預混合比之進氣對均質壓燃式柴油引擎燃燒性能分析。在不同的預混合燃氣及組成分率下,量測氣缸內的爆發壓力,以及排放的各項污染濃度, 並計算其熱釋放率,將實驗所的結果和數值模擬做比較。
    本研究已成功的將柴油引擎之進氣過程導入汽油、乙醇以及甲醇燃氣,並且進行穩定的柴油實驗。實驗的結果顯示甲醇之預混合燃氣所排放的各項污染濃度除了一氧化碳外均為最低。未來期許本實驗之結果,對HCCI方式安裝在密閉式循環柴油引擎系統有參考價值。

    In order to demand environment protection and face to energy crisis, the process of improving the energy system is urgent. Diesel engines can be generally applied to the power source for the vehicles on land and boats at sea. If we can reduce CO2 of the exhaust, a diesel engine can be a closed cycle system (CCDE). A homogeneous charge compression ignition (HCCI) method can enhance the thermal efficiency of a DI diesel engine and reduce the formulation of pollutant. If we apply a HCCI method to the CCDE system, we could use the characteristic of HCCI that can reduce pollutant so as to increase the life of CCDE system.
    This article is aimed at the KUBOTA RK-125 which is a single cylinder direct injection diesel engine and conducts an experiment. We use different experimental parameters to analyze the combustion performance of a homogeneous charge compression ignition engine with different of premixed ratios of intake premixed gas and its contents. The pressure in cylinder, exhaust emissions, and computation heat release rate of engine are measured at different composition fractions of intake premixed gas, and then the results between the experiment and simulation will be compared.
    The research has already implemented the fuels of gasoline, ethanol and methanol successfully in the intake process, and carries out a stable diesel engine experiment. Experimental results show that the premixed gas of ethanol has the lowest exhaust emissions except for CO . The experimental results in this research are expected to be a reference value when the close cycle diesel engine system installs with the HCCI method in the future.

    摘要…………………………………………………………………...I Abstract …………………………………………………………….II 致謝 ……………………………………………...……..........III 目錄 ………………………………………………….………………IV 表目錄 … ………………………………………...………...... VII 圖目錄…… … …… …………………………...……….......VIII 符號說明… …………………………………...………..........XIV 第一章 緒論…………… ……………….………………………….……...1 1-1 前言 ……… …………………………………………..………1 1-2 文獻回顧… … ……………………………………….……….4 1-3 研究方向與貢獻… ………………………...……………….10 第二章HCCI引擎運轉性能分析 …………………………………..12 2-1 活塞上死點(TDC)位置的決定…..……………… …12 2-2 HCCI引擎熱釋放率計算 .…….………………… …13 2-3 柴油引擎燃燒過程……………………………………16 2-4 預混合燃氣之當量比計算……………………………18 2-5著火延遲對燃燒的影響 ………………………………20 第三章 實驗設備和實驗步驟………………………………………23 3-1 實驗概述………………………………………………23 3-1.1 實驗設備圖……………………………………24 3-1.2 實驗設備規格 ……………………………….24 3-2 輔助燃油燃料特性比較….……………………… …26 3-3 均質進氣壓燃式引擎實驗之數據量測………………27 3-3.1 曲柄角之量測 … ……………………………27 3-3.2 氣缸壓力之量測………………………………28 3-3.3 轉速、馬力輸出與負載之量測………………28 3-3.4 噴油壓力設定與量測…………………………28 3-3.5 制動耗油(bsfc)之量測………………………29 3-3.6 輔助預混合燃氣組成濃度計算………………29 3-3.7 碳煙(Smoke)濃度之量測………………… …30 3-3-8 CO2/CO/HC 之量測…………………………..30 3-3-9 Nox 之量測 ……………… …………………30 3-4 實驗步驟 ………………………………………… …31 第四章 結果與討論......................................46 4-1實驗之壓力分析與熱釋放率比較…………………......……46 4-2實驗與模擬之各項排氣污染濃度比較 …………… 47 4-3不同的輔助燃料噴射角度下各項排氣污染比較 ……48 4-3-1 二氧化碳和一氧化碳在不同噴射角度下 濃度變化...............................48 4-3-2 NOx在不同噴射角度下濃度變化………………49 4-3-3 Smoke(碳煙)在不同噴射角度下濃度變化……50 4-3-4 不同噴射角度各項污染濃度變化實驗與 文獻比對...............................50 4-3-5 預混合燃氣在25°BTDC噴射時各項污染比較…51 第五章 結論與未來展望..................................85 5-1 結論…………………………………………….…….85 5-2 未來展望…………………………………….……...86 參考文獻 …………………………………………………………..88 自述…………………………………………………………..…… 93 表目錄 表一 不同預混燃料以及預混合比例之十六烷值對照表………………22 表二KUBOTA RK125 型直噴式柴油引擎規格 ……………………….33 表三KUBOTA RK125 型直噴式柴油引擎外部尺寸 ………………….34 表四 數位類比轉換卡規格表 ……………………………...……………35 表五 甲醇、乙醇與汽油的主要物化特性比較 …………………………35 圖目錄 圖1 燃燒時期簡圖………………………………………….……..........18 圖2 柴油引擎於進氣處採用輔助燃料噴射方式之實驗設備………..36 圖3 柴油引擎於進氣處採用輔助燃料噴射方式之實驗現場設備…...37 圖4 柴油引擎進氣處改裝....…...………………………………………..38 圖5 輔助燃料噴射裝置.………..………………………………………..38 圖6 KUBOTA RK-125.……………………………………..……..........38 圖7 KUBOTA RK-125引擎性能曲線...…………………….........39 圖8 W-70渦電流動力計.…………………………………..…..............40 圖9 W-70型渦電流動力計之性能曲線....………………………...41 圖10 曲柄角度檢測器.……………………………………………..........42 圖11 輔助燃料調壓閥.……………………………………………..........42 圖12 輔助燃料噴油嘴.……………………………………………..........42 圖13 輔助燃油供應與油箱.………………………………………..........42 圖14 高速電晶體動作開關(ECU).………………………………...........42 圖15 數位類比轉換卡……….…………………………………………..42 圖16 快速資料擷取器……….……………………………………..........43 圖17 進氣空氣流量計……….……………………………………..........43 圖18 燃氣壓力感測器……….……………………………………..........43 圖19 燃氣壓力電荷放大器…………..………………………………….43 圖20 引擎操作平台……….………………………………………..........43 圖21 負載控制器…….……………………………………………..........43 圖22 噴嘴壓力測試器……….……………………………………..........44 圖23變更後的燃料管路系統…….…………………………………44 圖24燃油消耗率量測器……….…………………………………….44 圖25 柴油煙霧量測計..………………………………………………...45 圖26 CO/HC/CO2氣體偵測儀 .………………………………………...45 圖27 NOx氣體分析儀..……….….…….…………………………...45 圖28 1800rpm 2kg-m 10%輔助燃料之壓力比較… ……………..53 圖29 1800rpm 2kg-m 10%輔助燃料之淨熱釋放率比較...……..54 圖30 1500rpm 2kg-m 10%輔助燃料之壓力比較..…………..........55 圖31 1500rpm 2kg-m 10%輔助燃料之淨熱釋放率比較..…......56 圖32 1200rpm 2kg-m 10%輔助燃料之壓力比較............................57 圖33 1200rpm 2kg-m 10%輔助燃料之淨熱釋放率比...............58 圖34 1800rpm,2Kg-m添加10%甲醇時實驗與模擬之氣缸壓力比較...59 圖35 1800rpm,2Kg-m添加10%乙醇時實驗與模擬之氣缸壓力比較…60 圖36 1800rpm,2Kg-m添加10%汽油時實驗與模擬之氣缸壓力比較....61 圖37 使用汽油為輔助燃料下不同混合比率之二氧化碳濃度比較….62 圖38 使用乙醇為輔助燃料下不同混合比率之二氧化碳濃度比較........62 圖39 使用甲醇為輔助燃料下不同混合比率之二氧化碳濃度比較........63 圖40 使用汽油為輔助燃料下不同混合比率之一氧化碳濃度比較…….63 圖41 使用乙醇為輔助燃料下不同混合比率之一氧化碳濃度比較........64 圖42 使用甲醇為輔助燃料下不同混合比率之一氧化碳濃度比較….64 圖43 使用汽油為輔助燃料下不同混合比率之NOx濃度比較……….65 圖44 使用乙醇為輔助燃料下不同混合比率之NOx濃度比較……….65 圖45 使用甲醇為輔助燃料下不同混合比率之NOx濃度比較……….66 圖46 使用汽油為輔助燃料下不同混合比率之Smoke濃度比較…….66 圖47 使用乙醇為輔助燃料下不同混合比率之Smoke濃度比較…….67 圖48 使用甲醇為輔助燃料下不同混合比率之Smoke濃度比較…….67 圖49 1200rpm 2Kg-m時,汽油在不同噴射角度下二氧化碳濃度變化.68 圖50 1200rpm 2Kg-m時,乙醇在不同噴射角度下二氧化碳濃度變化...68 圖51 1200rpm 2Kg-m時,甲醇在不同噴射角度下二氧化碳濃度變化..68 圖52 1500rpm 2Kg-m時,汽油在不同噴射角度下二氧化碳濃度變化.69 圖53 1500rpm 2Kg-m時,乙醇在不同噴射角度下二氧化碳濃度變化.69 圖54 1500rpm 2Kg-m時,甲醇在不同噴射角度下二氧化碳濃度變化69 圖55 1800rpm 2Kg-m時,汽油在不同噴射角度下二氧化碳濃度變化…70 圖56 1800rpm 2Kg-m時,乙醇在不同噴射角度下二氧化碳濃度變化…70 圖57 1800rpm 2Kg-m時,甲醇在不同噴射角度下二氧化碳濃度變化…70 圖58 1200rpm 2Kg-m時,汽油在不同噴射角度下一氧化碳濃度變化…71 圖59 1200rpm 2Kg-m時,乙醇在不同噴射角度下一氧化碳濃度變化…71 圖60 1200rpm 2Kg-m時,甲醇在不同噴射角度下一氧化碳濃度變化…71 圖61 1500rpm 2Kg-m時,汽油在不同噴射角度下一氧化碳濃度變化…72 圖62 1500rpm 2Kg-m時,乙醇在不同噴射角度下一氧化碳濃度變化…72 圖63 1500rpm 2Kg-m時,甲醇在不同噴射角度下一氧化碳濃度變化…72 圖64 1800rpm 2Kg-m時,汽油在不同噴射角度下一氧化碳濃度變化…73 圖65 1800rpm 2Kg-m時,乙醇在不同噴射角度下一氧化碳濃度變化…73 圖66 1800rpm 2Kg-m時,甲醇在不同噴射角度下一氧化碳濃度變化…73 圖67 1200rpm 2Kg-m時,汽油在不同噴射角度下NOx濃度變化 ……74 圖68 1200rpm 2Kg-m時,乙醇在不同噴射角度下NOx濃度變化 ……74 圖69 1200rpm 2Kg-m時,甲醇在不同噴射角度下NOx濃度變化 ……74 圖70 1500rpm 2Kg-m時,汽油在不同噴射角度下NOx濃度變化 ……75 圖71 1500rpm 2Kg-m時,乙醇在不同噴射角度下NOx濃度變化 ……75 圖72 1500rpm 2Kg-m時,甲醇在不同噴射角度下NOx濃度變化 ……75 圖73 1800rpm 2Kg-m時,汽油在不同噴射角度下NOx濃度變化 ……76 圖74 1800rpm 2Kg-m時,乙醇在不同噴射角度下NOx濃度變化 ……76 圖75 1800rpm 2Kg-m時,甲醇在不同噴射角度下NOx濃度變化 ……76 圖76 1200rpm 2Kg-m時,汽油在不同噴射角度下SMOKE濃度變化…77 圖77 1200rpm 2Kg-m時,乙醇在不同噴射角度下SMOKE濃度變化…77 圖78 1200rpm 2Kg-m時,甲醇在不同噴射角度下SMOKE濃度變化…77 圖79 1500rpm 2Kg-m時,汽油在不同噴射角度下SMOKE濃度變化…78 圖80 1500rpm 2Kg-m時,乙醇在不同噴射角度下SMOKE濃度變化…78 圖81 1500rpm 2Kg-m時,甲醇在不同噴射角度下SMOKE濃度變化… 78 圖82 1800rpm 2Kg-m時,汽油在不同噴射角度下SMOKE濃度變化 …79 圖83 1800rpm 2Kg-m時,乙醇在不同噴射角度下SMOKE濃度變化… 79 圖84 1800rpm 2Kg-m時,甲醇在不同噴射角度下SMOKE濃度變化… 79 圖85 Dae Sik Kim【26】汽油在不同預混燃氣噴射角度下NOx以及Smoke的濃度比較….....………………………………… 80 圖86 Dae Sik Kim【26】汽油在不同預混燃氣噴射角度下CO的 濃度比較....………………………………………………………80 圖87 預混合燃氣在25°BTDC噴射時二氧化碳濃度比(2Kg-m)81 圖88預混合燃氣在25°BTDC噴射時ㄧ氧化碳濃度比較(2Kg-m) 81 圖89預混合燃氣在25°BTDC噴射時NOx濃度比較 (2Kg-m)……82 圖90預混合燃氣在25°BTDC噴射時Smoke濃度比較 (2Kg-m)…82 圖91 預混合燃氣在25°BTDC噴射時二氧化碳濃度比較(1Kg-m) 83 圖92預混合燃氣在25°BTDC噴射時ㄧ氧化碳濃度比較(1Kg-m) 83 圖93預混合燃氣在25°BTDC噴射時NOx濃度比較(1Kg-m) ……84 圖94預混合燃氣在25°BTDC噴射時Smoke濃度比較(1Kg-m) …84

    1. T. Ura and T. Obara, “Development of Depth Independent Closed Cycle Diesel Engine for an Autonomous Underwater Vehicle”, Proc, Unmanned Untethered Submersible Tech. PP. 1-9, 1991.

    2. 吳鴻文,“密閉式循環柴油引擎發電系統之研究與性能分析研(I),”第十四屆中國造船暨輪機工程研討會暨國科會成果發表會,D3場次,民國91年。

    3. 吳鴻文, “密閉式循環柴油引擎發電系統之研究與性能分析研(II),” 第十五屆中國造船暨輪機工程研討會暨國科會成果發表會,C2-02場次,民國92年。

    4. Jphn B.Heywood 著,蘇金佳 譯;"內燃機";美商麥格羅.希爾國際股份有限公司出版;pp.4-6,pp.645-717。

    5. S.Onishi, S.Hong JO, et al, “Active Themo-Atmosphere Combustion(AT
    AC)-A New Combustion Process for Internal Combustio Engines”,SAE 790501,1979.

    6. Magnus Christensen, Anders Hultqvist et al, “Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio” SAE 1999-01-3679,1999.

    7. Magnus Christensen,et al, “Influence of Mixture Quality on Homogeneous Charge Compression Ignition. ” SAE982454,1998.

    8. Hisakazu Suzuki,et al. “Combustion Control Method of Homogeneous Charge Diesel Engines”, SAE980509,1998.

    9. 許志聰,“閉式循環柴油引擎之建立與運轉性能研究,”國立成功大學造船暨船舶機械工程研究所碩士論文,2001年6月。

    10. 楊佳穎,“長時間運轉型密閉式循環柴油引擎系統之建立、燃燒性能分析與單人自動化操控之研究,”國立成功大學造船暨船舶機械工程研究所碩士論文,2002年7月。

    11. 王仁宏,“密閉式循環柴油引擎發電系統機組化之性能、噪音與振動之研究,”國立成功大學造船暨船舶機械工程研究所碩士論文,2003年6月。

    12. 林文輝,“人造空氣對密閉式循環柴油引擎之性能影響分析,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2005年7月。

    13. 陳啟聰,“柴油引擎以天然氣為輔助燃料之燃燒循環變異與燃燒噪音之研究,” 國立成功大學機械工程研究所碩士論文,1989年。

    14. Randy P. Hessel and Christopher J. Rutland, “Intake Flow Modeling in a Four-Stroke Diesel Using KIVA-3. ” Journal of Propulsion and Power, Vol.11,n2,p 378-384,March-April 1995.

    15. Thomas W. Ryan III and Timothy J. Callahan, “Homogeneous Charge Compression Ignition of Diesel Fuel”, SAE 961160, 1996.
    16. Dr Thomas ,W Ryan Iii ,Allen W Gray Iii, “Homogeneous Charge Compression Ignition (Hcci) of Diesel Fuel”, SAE971676, 1997.

    17. Salvador M. Aceves, et al. “A Multi-Zone Model for Prediction of Hcci Combustion and Emissions”,SAE 2000 World Congress, March 2000, Detroit, MI, USA.

    18. R. Ogink , V. Golovitchev, “Gasoline Hcci Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes”, SAE International Fall Fuels & Lubricants Meeting & Exhibition, September 2001, San Antonio, TX, USA.

    19. 王建盺,關小光,程勇,蔣恒飛,“乙醇-柴油混合燃料的燃燒與排放特性”,內燃機學報,vol.20 n3,p225-229,2002。

    20. 黃佐華,聲紅兵,蔣德明,曾科,劉兵,張俊強,王錫斌,“Study on Combustion Characteristics of a DI Diesel Engine Operating on Diesel/Methanol Blends”,內燃機學報,vol.21 n6,p401-410,2003。

    21. Song-Charng Kong , Rolf D. Reitz, et al. “Modelling the Effects of Geometry-Generated Turbulence on HCCI Engine Combustion”,SAE 2003 World Congress & Exhibition, March 2003, Detroit, MI, USA.

    22. Song-Charng Kong ,“A study of natural gas/DME combustion in HCCI engines usingCFD with detailed chemical kinetics”, Fuel, v 86, n 10-11, p 1483-1489, July/August, 2007.

    23. 鄭博鴻,"均質進氣壓縮點火引擎之研究",碩士論文,國立海洋大學輪機所,中華民國93年6月。

    24. Kim, Dae Sik; Kim, Myung Yoon; Lee, Chang Sik “Effect of premixed gasoline fuel on the combustion characteristics of compression ignition engine” Energy and Fuels, v 18, n 4,p1213-1219, July/August, 2004.

    25. Kim, Dae Sik ; Lee, Chang Sik “Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR” Fuel, v 85, n 5-6, p 695-704, March/April, 2006.

    26. Kim, Dae Sik ;Kim, Myung Yoon; Lee, Chang Sik,“Combustion and emission characteristics of a partial homogeneous charge compression ignition engine when using two-stage injection” Combustion Science and Technology, v 179, n 3, p 531-551, March, 2007.

    27. Salvador M. Aceves, et al. “Analysis of the Effect of Geometry-Generated Turbulence on HCCI Combustion By Multi-Zone Modelling”, SAE Brasil Fuels & Lubricants Meeting, May 2005, Rio De Janiero, BRAZI.

    28. Lu¨ Xingcai,* Hou Yuchun, Ji Libin, Zu Linlin, and Huang Zhen, “Heat Release Analysis on Combustion and Parametric Study onEmissions of HCCI Engines Fueled with 2-Propanol/n-Heptane Blend Fuels” Energy and Fuels, v 20, n 5, p 1870-1878, September/October, 2006.

    29. 李智勝,“均質進氣壓燃式引擎之進氣對燃燒特性之效應研究,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2006年7月。

    30. Lyn W.T., Calculations of the Effect of Rate of Heat Release on the shape of Cylinder-pressure Diagram and Cycle Efficiency, Proc. IME(A.D.) 1.34. 1960-1961.

    31. Lyn W.T., Calculations of the Effect of Rate of Heat Release on the shape of Cylinder-pressure Diagram and Cycle Efficiency, Proc. IME(A.D.) 1.34. 1960-1961.

    32. Horng-Wen Wu and Jiunn-Der Sy*, “Heat Release Analysis in an Indirect Injection Diesel Engine with Coupled Fuel Injection/Combustion Model,” Journal of Society of Naval Architects and Marine Engineers, R.O.C, Vol. 16, No.2, PP.39-51, 1997.

    33. Watson, N.: “Turbochargers for the 1980s-Current Trends and Future Prostpects, ”SAE paper 790063, SAE Trans, vol. 88, 1979.

    34. Simescu, S.; Ryan, T. W.; Neely, G. D.; Matheaus, A. C. ;Surampudi , B. SAE Tech. Pap ,2002-01-0964, Ser. 2002.

    35. 歐祥程,“數值模擬應用於均質進氣柴油引擎之排氣污染研究,”國立成功大學系統及船舶機電工程學系研究所碩士論文, 2007年7月。

    下載圖示 校內:2010-09-10公開
    校外:2011-09-10公開
    QR CODE