| 研究生: |
鍾沛孚 Chung, Pei-Fu |
|---|---|
| 論文名稱: |
0.7mil 金鈀銅銲線接合特性之分析 Wire bonding characteristics of 0.7mil Au-Pd-plated Cu wires |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 0.7mil 金鈀銅線 、FAB 、IMCs 、Short tail |
| 外文關鍵詞: | 0.7mil Au-Pd-plated Cu wires, FAB, IMCs, Short tail |
| 相關次數: | 點閱:202 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體封裝的接合技術上,因銲線接合技術發展時間較久,在相關設備及技術上也較為成熟,故目前在封裝製程上銲線接合技術仍為主流。在銲線製程材料上,銅線相對於金線的主要優勢有節省線材成本高達30~50%、高導電性、導熱率佳、較高的線弧穩定度及較慢的介金屬化合物(IMC)生成速度。IMC的生成某種程度上能強化接合強度,但IMC 層的電阻較高。而伴隨IMC 的成長,IMC 層與線材的界面上會有Kirkendall 孔洞[31]的出現,且孔洞亦隨熱處理時間遞增而擴大成長為裂縫(Crack),將導致接點電性的劣化並降低鍵結的可靠度。
本實驗以市面上尚未正式推出的0.7mil 金鈀銅線及既有的鍍鈀銅線來當作這次實驗的線材。實驗結果顯示,金鈀銅線在拉斷力(Breaking load)及伸長率(Elongation)指標都優於鍍鈀銅線;再經由微硬度試驗得知,線材表面及結球部分金鈀銅線在硬度上比鍍鈀銅線軟,且在相同流量的保護氣體下,FAB (Free Air Ball)成型金鈀銅線比鍍鈀銅線有較佳的真圓度。
本次實驗更進一步探討放電燒球後其鍍層對於銅球的包覆性,在鍍鈀線上取七點去做元素分析,表面均有鈀層包覆,無漏銅之現象,而在金鈀銅線上亦均有金及鈀的元素分布在表面;在IMCs(Intermetallic compounds, 介金屬化合物)生成試驗上發現,這兩種線材的生成速度亦非常接近。但在作業性上,因為鍍鈀線在二銲點的魚尾(Stitch)成型較不穩定,且尾線(Tail)截斷速度過快,導致銲接過程機台容易鳴叫斷線(Short tail),而實驗結果得知,在鍍鈀層再鍍上一層金,不僅對於鍍層上的微細孔洞有改善,在機台上的作業性也有提升。
In semiconductor packaging industry, the wire bonding technology has been developed for a long time. Since the equipment and technology are more mature than the others, wire bonding technology is still the mainstream for packaging technology. For the material used in the process, copper wires have numerous advantages over gold wires. Copper wires can save the cost up to 30~50% compared with gold wires, and the high electrical conductivity, good thermal conductivity, high stability of wire and slower growth speed in intermetallic compound (IMC) are all the advantages making copper wires more favorable. The formation of the IMC can strengthen the bond, but the IMC layer has higher electric resistance. During the growth of the IMC, Kirkendall voids[31] will appear at the interface between the IMC layer and the wire, and the voids will enlarge to form cracks through heat treatment, thus leading to the deterioration of electrical contacts and the reduction of reliability of bondability.
The materials used in this experiment are the 0.7mil Au-Pd-plated copper wires which are not yet on the market and the existing Pd-plated copper wires. The experimental results show that Au-Pd-plated copper wire has a better breaking load and better elongation than these of the Pd-plated copper wire. The micro-hardness test shows that Au-Pd-plated copper wire is softer than the Pd-plated copper wire. With the same forming gas flow rate, Au-Pd-plated copper wire has better FAB (Free Air Ball) formation roundness than the Pd-plated copper wire.
This experiment also examines the coverage of the coating on the copper ball after the EFO (Electrical Flame-Off). By choosing seven different spots on Pd-plated copper wire for element analysis, it is observed that the surfaces are all covered with a layer of palladium, and there is no exposed Cu. Gold and palladium are also found on the surface of the Au-Pd-plated copper wire. The growth of IMCs (Intermetallic Compounds) test shows that the growth rate on Au-Pd-plated copper wire is the same as the Pd-plated copper wire. During the wire bonding process, the Pd-plated copper wire is found unstable in the formation of second bond stitch and on the joint with the finger. Moreover, the tails are cut-off too fast causing alarm of the equipment with short tail defect. However, the experiment result shows that with an extra layer of gold coated on the palladium layer, voids on the plating layer can be reduced and the work efficiency can be improved.
[1]Chunjin Hang, Chunqing Wang, Mingda Shi, Xiaochun Wu, Honghui Wang, “ Study of Copper Free Air Ball in Thermosonic Copper Ball Bonding” , 6th International Conference onElectronic Packaging Technology, IEEE. 2005.
[2]Tummala Rao, “Fundamentals of Microsystems Packaging”, 2002.
[3]London metal exchange Web, 2013.2.
[4]黃金交易網,2013.5。
[5]Heraeus workshop data, 2013.
[6]王元亭,放電結球細微銅導線抗拉強度之韋伯解析研究,國立成功大學材料科學及工程學系碩士論文,中華民國九十四年七月。
[7]張巍耀,金線與銅線在熱影響區的材料特性及其應用於銲線製程之動態分析,義守大學機械與自動化工程學系碩士論文,中華民國九十七年六月。
[8]黃翊婷,15μm 級放電結球及打線接合微細銅導線之拉伸斷線特性探討,國立成功大學材料科學及工程學系碩士論文,中華民國九十八年六月。
[9]Murali.S, Srikanth.N, Charles.J, “Effect of Wire Size on TheFormation of Intermetallics and Kirkendall Voids on Thermal Agingof Thermosonic Wire Bonds”, pp.3096- 3101, 2004.
[10]Hui Xu, Chang Qing Liu, Vadim V. Silberschmidt , Zhong Chen, “Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization“, 2009.
[11]Murali.S, Srikanth.N, Chaeles.J, “An analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging”,Materials Research Bulletin, pp.637-646, 2003.
[12]許心怡,銅線封裝的殘鋁厚度對推力影響,國立成功大學工程科學系碩論文,中華民國一百年七月。
[13]Y. H. Lu, Y. W. Wang, B. K. Appelt, Y. S. Lai, and C. R. Kao, “Growth of CuAl Intermetallic Compounds in Cu and Cu(Pd) Wire Bonding”, Electronic Components and Technology Conference, IEEE. pp.1481-1488, 2011.
[14]Shankara k. Prasad , “ Advanced Wirebond Interconnection Technology”, Kluwer Academic Publishers, 2004.
[15]光電產業與技術情報雙月刊,2012/7。
[16]www.eettaiwan.com電子工程專輯。
[17]K&S Maxum plus Wire Bonder Advance Parameter Training.K&Slevel 2 traning manual, 2005.
[18]PECO 銲針型錄,PECO, 2013。
[19]李輝煌,“田口方法-品質設計的原理與實務”第四版,高立書局,中華民國一百年。
[20]蔡政學,鍍鈀銅打線於通電測試下界面反應之研究(中文摘要),國立成功大學材料科學及工程學系碩士論文,中華民國一百零一年六月。
[21]柯文彬,鍍鈀銅打線之鈀分佈(中文摘要),國立成功大學材料科學及工程學系碩士論文,中華民國一百年六月。
[22]劉春松,鋁墊下電路型晶片銲線製程參數最佳化分析(中文摘要),國立成功大學工程科學系專班碩士論文,中華民國九十九年六月。
[23]Luke England, Tom Jiang, “Reliability of Cu Wire Bonding to AlMetallization”,Electronic Components and Technology Conference, pp. 1604-1613, 2007.
[24]Levine Lee, Matt Osborne, Horst Clauberg, Shane Hilsenbeck, “Improving Intermetallic Reliability in Ultra-FinePitch Wire Bonding”, 2004.
[25]王仁佑,抗氧化金屬鈀層於銅線製程界面反應之影響(中文摘要),國立成功大學材料科學及工程學系碩士論文,中華民國九十九年六月。
[26]陳博彥,微細銅導線放電結球特性與打線接合強度要因探討,國立成功大學材料科學及工程學系碩士論文,中華民國九十七年六月。
[27]Norhanani Binte Jaafar, Wai Leong Ching, Vempati Srinivasa Rao, Chai Tai Chong, Alastair David Trigg, “Fine Pitch Copper Wire Bonding Process Optimization with 33μm Size Ball Bond”, 13th Electronics Packaging Technology Conference, IEEE. 2011.
[28]Bernd K. Appelt, William T. Chen, Andy Tseng, Yi-Shao Lai, “Fine Pitch Cu Wire Bonding – As Good As Gold”, IEEE. 2011.
[29]Yingwei Jiang, RongLu Sun, Sonder Wang, Ding Min b Weimin Chen, “Study of a Practicable Wire Bonding Method for Applying Copper Wire Bond to Large-scale Integrated Circuits”, Electronic Components and Technology Conference, IEEE. 2010.
[30]Xingjie Liu, Techun Wang, Yuqi Cong, Jiaji Wang, “Study on Interface of Pd-plated Cu Wire Stitch Bonding ”, International Symposium on Advanced Packaging Materials, IEEE. 2011.
[31]半導體科技-TSV製程技術整合分析,2010.5。
[32]三聯科技 封裝事業一部,銅線封裝技術,中華民國一百零二年二月。
校內:2023-08-29公開