| 研究生: |
梁正傑 Liang, Jheng-Jie |
|---|---|
| 論文名稱: |
垂直波形板置於混合對流中熱泳效應對微粒 附著沉積率之研究 Effect of thermophoresis on particle deposition rate from a mixed convection flow onto a vertical wavy flat plate |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 波形板 、氣懸浮微粒 、熱泳效應 |
| 外文關鍵詞: | wavy surface, aerosol particles, thermophoresis |
| 相關次數: | 點閱:114 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用Prandtl轉換理論(Prandtl’s Transposition Theorem)對原座標系統沿某一方向展開,將不規則表面轉換成一可計算平面的座標系統,數學分析從完整的Navier-Stokes方程式開始,考慮氣懸浮微粒因受溫度梯度影響所產生的熱泳(thermophoresis; thermophoresis motion)現象,經過非相似轉換(Non-similarity method)後求得的邊界層方程式則以三次樣線定置法(SADI ; Spline Alternating-Direction Implicit Method)計算,探討波形曲面相對於平板所增加的表面積對氣懸浮微粒(aerosol particles)沉積效應的影響。
將系統簡化後與相關文獻比較發現所得的結果相當合理,而研究結果顯示,在波形板上一個完整的波形內,沉積效應最大值會發生在波峰附近,此時波形板的沉積效率較平板好;最小值則在波谷附近,其波形板沉積效率則會低於平板,而波形板只有在第一個波表面時其平均沉積率會明顯比平板來得好,其餘之處則不甚明顯,甚至低於平板的平均沉積率,在混合對流中自然對流效應愈強的情況下,波形板才愈有可能在每一處(板前端除外)的平均沉積率都優於平板,同時在本文的研究可發現,微粒直徑小的粒子受熱泳效應的影響較小,直徑大的微粒粒子則受到熱泳效應的影響較大。
In this study, Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain direction. The irregular surface can be transferred into a calculable plane coordinate system. The governing equations of the system are derived from complete Navier-Stokes equations. The temperature gradient will influence aerosol particles which can cause the thermophoresis motion. The boundary layer equations deriving from non-similarity method can be solved by spline alternating-direction implicit method (SADI). There are more surface areas in wavy surface plates than flat plates so this study will figure out the deposition effect of aerosol particles causing by additional surface areas.
There will be good agreements after simplifying the system and comparing with previous works. The numerical results show that the maximum deposition effect will happen near the peak within a complete wave. At this place, the deposition rate of wavy surface plates is better than flat plates. On the other side, the minimum deposition effect happens near the bottom of waves. There is better deposition rate in flat plates than wavy surface plates. The average deposition rate of wavy surface plates is much better than flat plates only in the first wave. It is almost equal or even worse than flat plates except the first wave. If there are stronger natural convection effect in mixed convections, there will be better chances cause that the average deposition rate of wavy surface plates is better than flat plates everywhere (except the beginning of plates). Otherwise, the outcome demonstrates the influence of smaller aerosol particles resulting from thermophoresis is smaller than bigger aerosol particles.
Ahlbrg, J. H., Nilson, E. N., and Walsh, J. L., “The theory of splines and their application,” Academic Press, 1967.
Akira Toda, Hisataka Ohnishi, Ritsu Dobashi, Toshisuke Hirano et al., Experimental study on the relation between thermophoresis and size of aerosol particles, International Journal of Heat and Mass Transfer, 41-17, 2710-2713, 1998.
Albasiny, E. L. and Hoskins, W. D., “Increase Accuracy cubic spline solutions to two-point boundary value problems,” J. Inst. Math. Applic., Vol. 9, pp. 47-55, 1972.
Batchelor, G. K. and Shen, C., J. Colloid Interface Sci, Vol. 107, pp. 21-37, 1985.
Chang, Y. P., Tsai, R. and Sui, f. M. The effect of thermophoretic on particle deposition from a mixed convection flow onto a vertical flat plate. J. Aerosol Sci. 30, 1363, 1999.
Chawla, T. C., Leaf, G., Chen, W. L., and Grolmes, M. A., The application of the collocation method using hermite cubic spline to nonlinear transient one-dimensional heat conduction problem,” ASME Journal of Heat Transfer, pp. 562-569, 1975.
Chen, C. K., “Application of cubic spline collocation method to solve transient heat transfer problem,” Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182, 1986.
Chiou, M. C. Theoretical predictions and experimental measurements of particle deposition on an isothermal vertical cylinder. J. of the Chinese Society of Mechanical Engineers. 19, 323-333, 1998.
Chiu, P. and Chou, H. M., “Free Convection in the Boundary Layer Flow of a Micropolar Fluid along a Vertical Wavy Surface”, Acta Mechanical. Vol. 101, pp. 161-174, 1993.
Chiu, C. P. and Chou, H. M., “Transient analysis of natural convection along a vertical wavy surface in micropolar fluids,” International Journal of Engineering Science, Vol. 32, pp. 19-33, 1994.
Crump, J. G., and Seinfield, J. H., Turbulent Deposition and Gravitational Sedimentation of an Aerosol in a Vessel of Arbitrary Shape, J. Aerosol Sci., Vol. 12, no. 5, pp.405, 1981.
Fyfe, D. J., “The use of cubic splines in the solution of two-point boundary value problems,” Computer Journal, Vol. 12, pp. 188-192, 1969.
Goren, S. L., J. Colloid Interface Sci., Vol. 61(1). pp. 77-85, 1977.
Hales, J. M., Schwendiman, L. C. and Horst, T. W., Int. J. Heat Mass Transfer, Vol. 15, pp. 1837-1850, 1972.
Homsy, G. M., Geyling, F. T. and Walker, K. L., J. Colloid Interface Sci., Vol.83(2), pp. 495-501, 1981.
Isa, M. and Usmani, R. A., “Quintic spline solution of a boundary value problem,” International Journal of Computer Mathematics, Vol. 11, pp. 169-184, 1982.
Jain, M. K. and Aziz, T., “Spline Function approximation for differential equations,” J. of Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 129-143, 1981.
Jain, M. K. and Azia, T., “Cubic spline solution of two-point boundary value problems with significant first derivatives,” Computer Methods in Applied Mechanics and Engineering, Vol. 39, pp. 83-91,1983.
Jayaraj, S., Dinesh, K.K. and Pillai, K.L. Thermophoresis in natural convection with variable properties. Heat and Mass Trans. 34, 469-475, 1999.
Liggett, J. A. and Salmon, J. R., “Cubic spline boundary element,” Int. J. Numerical Methods in Engineering, Vol. 17, pp. 543-556, 1981.
Mills, A. F. , Xu Hang and Ayazi, F., Int. J. Heat Mass Transfer, Vol. 27, pp. 1110-1113, 1984.
Napolitano, M., “Efficient ADI and spline ADI Methods for the steady-state Navior-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115, 1984.
Okuyama, K., Kousaka, Y., Yamamoto, S., and HosoKawa, T., Particle Loss of Aerosols with Particle Diameters between 6 and 2000 NM in Stirred Tank , J. Colloid and Interface Sci., Vol. 110, no.1, pp.214, 1986.
Raggett, G. F., Stone, J. A. R., and Wisher, S. J., “The cubic spline solution of practical problems modeled by hyperbolic partial differential equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 139-151, 1976.
Rees, A. S. and Pop, I. A note on free convection along a vertical wavy surface in a porous medium. ASME J. of Heat Trans.116, 505-508, 1994.
Reist, P. C. Aerosol science and techonlogy. Megraw-Hill, NY, 1993.
Rubin, S. G. and Graves, R. A., “Viscous flow solution with a cubic spline approximation,” Computers and Fluids, Vol. 1, No. 5, pp. 1-36, 1975.
Rubin, S. G. and Khosla, P. K., “Higher-order numerical solution using cubic splines,” AIAA Journal, Vol. 14, pp. 851-858, 1976.
Rubin, S. G. and Khosla, P. K., “Polynomial interpolation methods for viscous flow calculation,” Journal of Computational Physics, Vol. 24, pp. 217-244, 1977.
Selim, A., Hossain, M. A. and Rees, D.A.S., The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis, International Journal of Thermal Sciences 42, 973-982, 2003.
Shen, C., J. Colloid Interface Sci., Vol. 127(1), pp. 104-115, 1989.
Stratman, F., Friendlander, S., Fissan, H., and Papperger, A., J. Aerosol Sci, Vol. 8, pp. 651-654, 1987.
Talbot, L., Cheng, R. K., Schefffer, R. W. and Wills, D. P., J. Fluid Mech .,Vol. 101, pp. 737-758, 1980.
Tsai, R., Chang, Y. P. and Lin, T. Y. Particle deposition onto a flat surface from a point particle deposition onto a wafer. J. Aerosol Sci. 29, 811-825, 1998.
Tsai, R. and Lin, Z.Y. Approach for evaluating aerosol particle deposition from a natural convection flow onto a vertical flat plate. J. of Hazardous Materials. 69, 217-227, 1999.
Wanga, P. and Kahawita, R., “A two-dimensional numerical model of estuarine circulation using cubic spline,” Canadian Journal of Civil Engineering, Vol. 10, pp. 116-124, 1983.
Wangb, P. and Kahawita, R., “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286, 1983.
Wang, P., Lin, S., and Kahawita, R., “The cubic spline integration technique for solving fusion welding problems,” Journal of Heat Transfer, Vol. 107, pp. 485-489, 1985.
Yang, Y. T., Chen, C. K., Lin, M. T., “Natural convection of non-Newtonian fluids along a wavy vertical plate including the magnetic field effect,” International Journal of Heat and Mass Transfer, Vol. 39, No. 13, pp. 2831-2842, 1996.
Yao, S. A. Natural convection along a vertical wavy surface. ASME J. of Heat Trans. 105, 465-468, 1983.
Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S. and Fissan, H., J. Aerosol Sci., Vol. 22, pp. 63-72, 1991.