| 研究生: |
賴郁仁 Lai, Yu-Ren |
|---|---|
| 論文名稱: |
生成式人工智慧工具介入學生執行設計流程的初探-以ChatGPT與Midjourney為例 Preliminary Exploration of Generative Artificial Intelligence Tools in Students' Design Processes: A Case Study of ChatGPT and Midjourney |
| 指導教授: |
陳璽任
Chen, Hsi-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 生成式AI 、ChatGPT 、Midjourney 、設計流程 |
| 外文關鍵詞: | Generative AI, ChatGPT, Midjourney, Design Process |
| 相關次數: | 點閱:196 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設計流程展現人類在模糊空間的創造和探索,呈現在發散與收斂思維之間不斷切換、尋找最為合適的解決方案的思路歷程,人工智慧(Artificial Intelligence, AI)的運作則基於預先設定的演算法和大量的數據分析,快速產生精準且可靠的回應或解決方案,早在90年代便已有學者開始探尋這一技術是否能為設計流程帶來奧援,近一年來隨著生成式人工智慧(Generative Artificial Intelligence, 生成式AI)的乍現,又為AI介入設計流程引發另一波討論,然而,從學生視角來看待此一變革的現存研究並不多見,為此本研究欲透過在課堂中導入快速設計活動,從學生的觀點出發,展開對生成式AI工具在設計流程的初探,試圖釐清如何運用這些工具並推敲其所帶來的效用,是為本研究目的。本研究廣泛搜集與彙整至今關於AI在設計應用領域的重要文獻。接著透過觀察、回顧半結構式訪談並經由主題式分析揭示AI工具介入設計流程的效益與局限,也發現唯有學生熟悉並懂得如何調整和引導時,才能真正提升效率,透過專家評分結果,顯現AI工具的先後介入設計效果也有所不同。
本研究最後周延盤點AI工具與設計流程中的適用時機和協作模式,並提出幾項學生所需的關鍵能力。在適用時機方面,文字型AI工具在定義階段最為合適,並可在發展階段作為想法客觀評估的依據,圖像型AI工具則在製作人物誌圖片時具有優勢,並且在發展階段可快速提供視覺參考。在協作模式方面,在問題空間中應先讓學生主導議題探索和概念發展,再適當地融入AI工具的使用,以有效地規避AI工具所帶來的負面影響; AI工具則需要提前介入解法空間,即利用AI工具快速探索和生成常規或已知的解決方案以節省時間。而由於AI工具的先後介入皆會產生負面影響,因此將AI工具僅作為設計溝通媒介也不妨是個選擇。最後,本研究認為學生需具備批判性思維、保有創新能力和技術適應能力,以有效將AI工具融入設計流程中,將其所帶來的效益最佳化。
The design process showcases human creativity and exploration in ambiguous spaces, alternating between divergent and convergent thinking to find the most suitable solutions. Artificial Intelligence (AI) operates based on predefined algorithms and extensive data analysis, quickly generating precise and reliable responses or solutions. Since the 1990s, scholars have explored whether this technology could aid the design process. Recently, with the emergence of Generative AI, there has been renewed discussion about AI's role in this process. However, only some studies have examined this transformation from a student's perspective. This research aims to explore the initial use of generative AI tools in the design process from students' viewpoints, introduced through rapid design activities in a classroom setting. The goal is to understand how these tools can be utilized and to evaluate their effectiveness.This study involves an extensive collection and review of significant literature on AI in design. Through observation, semi-structured interviews, and thematic analysis, it reveals the benefits and limitations of AI tools in the design process. It finds that efficiency is truly enhanced only when students are familiar with and know how to adjust and guide the use of these tools. Expert evaluation results also indicate that the timing of AI tool intervention affects the design outcome.
The study comprehensively identifies appropriate times and collaborative modes for AI tools in the design process, proposing critical skills students need. Regarding timing, text-based AI tools are most suitable in the define phase and can objectively assess ideas during the develop phase. Image-based AI tools excel in creating character profiles and offer rapid visual references during the develop phase. Regarding collaboration modes, students should initially lead the exploration of issues and concept development in the problem space before integrating AI tools to avoid negative impacts. AI tools should be involved early in the solution space to explore and generate conventional or known solutions, saving time. As the intervention of AI tools at different stages can have negative impacts, using them solely as a design communication medium is also a viable option. Finally, the study concludes that students need critical thinking, innovative capacity, and technological adaptability to integrate AI tools effectively into the design process and optimize their benefits.
Adesso, G. (2022). GPT4: The ultimate brain. Authorea Preprints.
Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for Human-AI Interaction. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3290605.3300233
Atieh, A. M., Cooke, K. O., & Osiyevskyy, O. (2023). The role of intelligent manufacturing systems in the implementation of Industry 4.0 by small and medium enterprises in developing countries. Engineering Reports, 5(3), e12578.
Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning (SSRN Scholarly Paper 4337484). https://doi.org/10.2139/ssrn.4337484
Barlex, D. (2007). Creativity in school design & technology in England: A discussion of influences. International Journal of Technology and Design Education, 17(2), 149–162. https://doi.org/10.1007/s10798-006-0006-x
Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. Journal of Product Innovation Management, 40(2), 139–153. https://doi.org/10.1111/jpim.12656
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101. https://doi.org/10.1191/1478088706qp063oa
Chen, L., Wang, P., Dong, H., Shi, F., Han, J., Guo, Y., Childs, P. R. N., Xiao, J., & Wu, C. (2019). An artificial intelligence based data-driven approach for design ideation. Journal of Visual Communication and Image Representation, 61, 10–22. https://doi.org/10.1016/j.jvcir.2019.02.009
Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 0(0), 1–17. https://doi.org/10.1080/10494820.2023.2253861
Chusilp, P., & Jin, Y. (2006). Impact of mental iteration on concept generation.
Cobb, P. J. (2023). Large Language Models and Generative AI, Oh My!: Archaeology in the Time of ChatGPT, Midjourney, and Beyond. Advances in Archaeological Practice, 11(3), 363–369. https://doi.org/10.1017/aap.2023.20
Colton, S., Smith, A., Berns, S., Murdock, R., & Cook, M. (2021). Generative Search Engines: Initial Experiments.
Crouser, R. J., & Chang, R. (2012). An Affordance-Based Framework for Human Computation and Human-Computer Collaboration. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2859–2868. https://doi.org/10.1109/TVCG.2012.195
Cutting, D. R., Karger, D. R., Pedersen, J. O., & Tukey, J. W. (1992). Scatter/Gather: A cluster-based approach to browsing large document collections. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 318–329. https://doi.org/10.1145/133160.133214
Design Kit. (n.d.). Retrieved December 29, 2023, from https://www.designkit.org/
Design Council. (2005). The ‘double diamond’design process model. Design Council.
Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem–solution. Design Studies, 22(5), 425–437. https://doi.org/10.1016/S0142-694X(01)00009-6
Doshi, A. R., & Hauser, O. (2023). Generative Artificial Intelligence Enhances Creativity but Reduces the Diversity of Novel Content (SSRN Scholarly Paper 4535536). https://doi.org/10.2139/ssrn.4535536
Dove, G., Halskov, K., Forlizzi, J., & Zimmerman, J. (2017). UX Design Innovation: Challenges for Working with Machine Learning as a Design Material. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 278–288. https://doi.org/10.1145/3025453.3025739
Dowling, M., & Lucey, B. (2023). ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Research Letters, 53, 103662. https://doi.org/10.1016/j.frl.2023.103662
Dubberly, H. (2005). How Do You Design? https://www.academia.edu/9821063/How_Do_You_Design
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Eapen, T. T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023, July 1). How Generative AI Can Augment Human Creativity. Harvard Business Review. https://hbr.org/2023/07/how-generative-ai-can-augment-human-creativity
Else, H. (2023). Abstracts written by ChatGPT fool scientists. Nature, 613(7944), 423–423. https://doi.org/10.1038/d41586-023-00056-7
Figoli, F. A., Rampino, L., & Mattioli, F. (2022, June 16). AI in design idea development: A workshop on creativity and human-AI collaboration. DRS2022: Bilbao. https://doi.org/10.21606/drs.2022.414
Fu, Z., & Zhou, Y. (2020). Research on human–AI co-creation based on reflective design practice. CCF Transactions on Pervasive Computing and Interaction, 2(1), 33–41. https://doi.org/10.1007/s42486-020-00028-0
Gal, R., Patashnik, O., Maron, H., Chechik, G., & Cohen-Or, D. (2021). StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (arXiv:2108.00946). arXiv. https://doi.org/10.48550/arXiv.2108.00946
Gillies, M., Fiebrink, R., Tanaka, A., Garcia, J., Bevilacqua, F., Heloir, A., Nunnari, F., Mackay, W., Amershi, S., Lee, B., d’Alessandro, N., Tilmanne, J., Kulesza, T., & Caramiaux, B. (2016). Human-Centred Machine Learning. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 3558–3565. https://doi.org/10.1145/2851581.2856492
Girotra K., Meincke L., Terwiesch C., & Ulrich K. T. (2023). Ideas are Dimes a Dozen: Large Language Models for Idea Generation in Innovation (SSRN Scholarly Paper 4526071). https://doi.org/10.2139/ssrn.4526071
Grant, N., & Metz, C. (2022). A new chat bot is a ‘code red’for Google’s search business. New York Times, Dec 21, 2022.
Griebel, M., Flath, C., & Friesike, S. (2020). AUGMENTED CREATIVITY: LEVERAGING ARTIFICIAL INTELLIGENCE FOR IDEA GENERATION IN THE CREATIVE SPHERE. ECIS 2020 Research-in-Progress Papers. https://aisel.aisnet.org/ecis2020_rip/77
Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2020). A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications (arXiv:2001.06937). arXiv. https://doi.org/10.48550/arXiv.2001.06937
Gunaratnam, D. J., & Gero, J. S. (1994). Effect of Representation on the Performance of Neural Networks in Structural Engineering Applications. Computer-Aided Civil and Infrastructure Engineering, 9(2), 97–108. https://doi.org/10.1111/j.1467-8667.1994.tb00365.x
Hanington, B., & Martin, B. (2019). Universal methods of design expanded and revised: 125 Ways to research complex problems, develop innovative ideas, and design effective solutions. Rockport publishers.
Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160–180. https://doi.org/10.1016/j.destud.2008.01.001
Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., & Belongie, S. (2017). Stacked Generative Adversarial Networks (arXiv:1612.04357). arXiv. https://doi.org/10.48550/arXiv.1612.04357
Hughes, R. T., Zhu, L., & Bednarz, T. (2021). Generative Adversarial Networks-Enabled Human-Artificial Intelligence Collaborative Applications for Creative and Design Industries: A Systematic Review of Current Approaches and Trends. Frontiers in Artificial Intelligence, 4, 604234. https://doi.org/10.3389/frai.2021.604234
Hunt, K. M. R. (2022). Could artificial intelligence win the next Weather Photographer of the Year competition? Weather, n/a(n/a). https://doi.org/10.1002/wea.4348
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2018). Image-to-Image Translation with Conditional Adversarial Networks (arXiv:1611.07004). arXiv. https://doi.org/10.48550/arXiv.1611.07004
Karimi, P., Rezwana, J., Siddiqui, S., Maher, M. L., & Dehbozorgi, N. (2020). Creative sketching partner: An analysis of human-AI co-creativity. Proceedings of the 25th International Conference on Intelligent User Interfaces, 221–230. https://doi.org/10.1145/3377325.3377522
King, M. (2022). Harmful biases in artificial intelligence. The Lancet Psychiatry, 9(11), e48. https://doi.org/10.1016/S2215-0366(22)00312-1
Kirmani, A. R. (2023). Artificial Intelligence-Enabled Science Poetry. ACS Energy Letters, 8(1), 574–576. https://doi.org/10.1021/acsenergylett.2c02758
Kocaballi, A. B. (2023). Conversational AI-Powered Design: ChatGPT as Designer, User, and Product (arXiv:2302.07406). arXiv. https://doi.org/10.48550/arXiv.2302.07406
Koch, J., Lucero, A., Hegemann, L., & Oulasvirta, A. (2019). May AI? Design Ideation with Cooperative Contextual Bandits. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3290605.3300863
Lai, Y., Chen, H.-J., & Yang, C. (2023). Exploring the Impact of Generative Artificial Intelligence on the Design Process: Opportunities, Challenges, and Insights. Artificial Intelligence, Social Computing and Wearable Technologies, 113(113). https://doi.org/10.54941/ahfe1004178
Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (arXiv:1609.04802). arXiv. https://doi.org/10.48550/arXiv.1609.04802
Lewrick, M., Link, P., & Leifer, L. (2020). The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods.
Liao, J., Hansen, P., & Chai, C. (2020). A framework of artificial intelligence augmented design support. Human–Computer Interaction, 35(5–6), 511–544. https://doi.org/10.1080/07370024.2020.1733576
Maher, M. L., & Poon, J. (1996). Modeling design exploration as co‐evolution. Computer‐Aided Civil and Infrastructure Engineering, 11(3), 195–209.
Meyer, S., Elsweiler, D., Ludwig, B., Fernandez-Pichel, M., & Losada, D. E. (2022). Do We Still Need Human Assessors? Prompt-Based GPT-3 User Simulation in Conversational AI. Proceedings of the 4th Conference on Conversational User Interfaces, 1–6. https://doi.org/10.1145/3543829.3544529
Oh, C., Song, J., Choi, J., Kim, S., Lee, S., & Suh, B. (2018). I Lead, You Help but Only with Enough Details: Understanding User Experience of Co-Creation with Artificial Intelligence. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3173574.3174223
Parra Pennefather, P. (2023). Prototyping with Generative AI. In P. Parra Pennefather (Ed.), Creative Prototyping with Generative AI: Augmenting Creative Workflows with Generative AI (pp. 109–143). Apress. https://doi.org/10.1007/978-1-4842-9579-3_5
Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training.
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents (arXiv:2204.06125). arXiv. https://doi.org/10.48550/arXiv.2204.06125
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Image Synthesis with Latent Diffusion Models (arXiv:2112.10752). arXiv. https://doi.org/10.48550/arXiv.2112.10752
Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J., & Norouzi, M. (2022). Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding (arXiv:2205.11487). arXiv. https://doi.org/10.48550/arXiv.2205.11487
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210
Schramowski, P., Turan, C., Andersen, N., Rothkopf, C. A., & Kersting, K. (2022). Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3), Article 3. https://doi.org/10.1038/s42256-022-00458-8
Shi, Y., Shang, M., & Qi, Z. (2023). Intelligent layout generation based on deep generative models: A comprehensive survey. INFORMATION FUSION, 100, 101940. https://doi.org/10.1016/j.inffus.2023.101940
Siemon, D., Elshan, E., de Vreede, T., Oeste-Reiß, S., de Vreede, G.-J., & Ebel, P. (2022). Examining the Antecedents of Creative Collaboration with an AI Teammate.
Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An analysis of the automatic bug fixing performance of chatgpt. arXiv Preprint arXiv:2301.08653.
Stieglitz, S., Mirbabaie, M., Möllmann, N. R. J., & Rzyski, J. (2022). Collaborating with Virtual Assistants in Organizations: Analyzing Social Loafing Tendencies and Responsibility Attribution. Information Systems Frontiers, 24(3), 745–770. https://doi.org/10.1007/s10796-021-10201-0
Tanaka, K. (2020). Designing for Essential Values. Life Design Books.
Thomas, D. (2006). A General Inductive Approach for Analyzing Qualitative Evaluation Data. American Journal of Evaluation, 27, 237–246. https://doi.org/10.1177/1098214005283748
Thoring, K., Huettemann, S., & Mueller, R. M. (2023). THE AUGMENTED DESIGNER: A RESEARCH AGENDA FOR GENERATIVE AI-ENABLED DESIGN. Proceedings of the Design Society, 3, 3345–3354. https://doi.org/10.1017/pds.2023.335
Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. https://doi.org/10.1186/s40561-023-00237-x
Tschimmel, K. (2012). Design Thinking as an effective Toolkit for Innovation. ISPIM Conference Proceedings, 1.
Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212–227. https://doi.org/10.1111/jpim.12523
Westra, S., & Zempekakis, I. (2022, May). AI-by-Design – How to build human-centred AI solutions. https://www.ai-by-design.com/
Wu, Z., Ji, D., Yu, K., Zeng, X., Wu, D., & Shidujaman, M. (2021). AI Creativity and the Human-AI Co-creation Model. In M. Kurosu (Ed.), Human-Computer Interaction. Theory, Methods and Tools (pp. 171–190). Springer International Publishing. https://doi.org/10.1007/978-3-030-78462-1_13
Xie, Y., Seth, I., Hunter-Smith, D. J., Rozen, W. M., Ross, R., & Lee, M. (2023). Aesthetic Surgery Advice and Counseling from Artificial Intelligence: A Rhinoplasty Consultation with ChatGPT. Aesthetic Plastic Surgery, 47(5), 1985–1993. https://doi.org/10.1007/s00266-023-03338-7
Yang, H., Huang, D., Wang, Y., & Jain, A. K. (2019). Learning Face Age Progression: A Pyramid Architecture of GANs (arXiv:1711.10352). arXiv. https://doi.org/10.48550/arXiv.1711.10352
Yang, Q., Steinfeld, A., Rosé, C., & Zimmerman, J. (2020). Re-examining Whether, Why, and How Human-AI Interaction Is Uniquely Difficult to Design. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3313831.3376301
Yoon, H., & Jun, S. (2023). Ethical Awareness of UXers in the Loop: Ethical Issues in the Uxer-AI Collaboration Process from a UX Perspective. Proceedings of the 25th International Conference on Mobile Human-Computer Interaction, 1–6. https://doi.org/10.1145/3565066.3608691
Yun, G., Cho, K., Jeong, Y., & Nam, T.-J. (2022, June 16). Ideasquares: Utilizing generative text as a source of design inspiration. DRS2022: Bilbao. https://doi.org/10.21606/drs.2022.484
Zeng, Z., Sun, X., & Liao, X. (2019). Artificial Intelligence Augments Design Creativity: A Typeface Family Design Experiment. In A. Marcus & W. Wang (Eds.), Design, User Experience, and Usability. User Experience in Advanced Technological Environments (pp. 400–411). Springer International Publishing. https://doi.org/10.1007/978-3-030-23541-3_29
Zhang, G., Raina, A., Cagan, J., & McComb, C. (2021). A cautionary tale about the impact of AI on human design teams. Design Studies, 72, 100990. https://doi.org/10.1016/j.destud.2021.100990
Zhu, Q., & Luo, J. (2021). Generative Pre-Trained Transformer for Design Concept Generation: An Exploration (arXiv:2111.08489). arXiv. https://doi.org/10.48550/arXiv.2111.08489