| 研究生: |
謝崇良 Hsieh, Chung-Liang |
|---|---|
| 論文名稱: |
苗栗地區陸地深部打鹿砂岩地層岩石中菌種之分離與鑑定 The Isolation and Identification of the Indigenous Bacteria from Deep Subsurface Rocks of Talu Sandstone in the Miaoli Area |
| 指導教授: |
簡錦樹
Jean, Jiin-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 鐵還原菌、深層菌、Bacillus、細菌分離及鑑定 |
| 外文關鍵詞: | Ferric-reducing bacteria, Bacillus, the deep subsurface bacteria, bacterial isolation and identification. |
| 相關次數: | 點閱:194 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深層菌的研究大部分都是利用鑽井之便來採集深層的地層水或是岩樣,其環境包含了含有石油的岩層及其地層水、湖泊的沉積岩、及地下噴出地表的熱泉水等都可能有深層菌的存在,而本研究僅以苗栗地區深部地層含石油的打鹿砂岩作為探討之對象。
本研究的樣品為苗栗地區陸地油井所採得的深部岩層之岩屑(即打鹿砂岩)及其鑽泥,其深度皆在三千公尺以上。利用發酵培養基(TYG medium)和鐵還原培養基(MSA medium)來優厚培養岩屑中及鑽泥中的各類菌種,並進行菌株的分離,透過DNA萃取、聚合酶連鎖反應(PCR)、膠電泳、DNA定序及親緣關係樹等分子生物技術將菌種鑑定。同時亦進行菌種的生存溫度及鹽度範圍之測試,以了解菌群生存的適宜範圍,用以推測菌群的可能來源,並以電子顯微鏡觀察細菌型態。
本研究實驗顯示所培養出來的菌屬可利用發酵或鐵還原反應獲得能量而生長,並且由鐵還原菌培養基的沉降試驗與鐵還原菌的優厚培養結果會產生可被磁鐵吸引的黑色物質,可確定培養基中紅棕色的Fe(Ⅲ)-oxyhydroxide轉變成黑色物質並非是單純的化學變化;由菌種鑑定及親緣關係樹得到30H1L菌株與Bacillus pumilus 與Bacillus sp. PB10有97﹪的核苷酸相似度,所以推定此分離菌為細菌Bacillus屬的一種。
The study of deep subsurface bacteria is mainly from the deep subsurface rocks or geological formation water while drilling a well. The environments where the deep subsurface bacteria may be present include oil-bearing rocks, geological formation water, lacustrine deposits and sedimentary rock, hot spring, etc. However, only oil-bearing rocks in the Miaoli area were taken for this study.
The samples of this study taken from the 3385-meter-deep subsurface rocks (i.e. Talu Sandstone) and drilling muds were collected in a certain drilling well in the Miaoli area. The indigenous bacteria from these rocks and muds are isolated and enriched with the MSA medium for the ferric-reducing bacteria and the TYG medium for the fermentative bacteria. The bacteria were identified followed by using the molecular biotechnology such as DNA extraction and purification, PCR (polymerase chain reaction), gel electrophoresis, gene sequencing and phylogenetic tree. Meanwhile, the laboratory tests for the ranges of temperature and salinity that the indigenous bacteria were adapted to the environment were performed. This is to understand the most optimal ranges for bacterial growth and to speculate the possible source of the indigenous bacteria. The electron microscopes were used to observe the morphology of bacteria.
The experimental results of the study showed that the viable bacterial strains could obtain energy and grow by utilizing the reaction products of the fermentative and ferric-reducing bacteria. The sedimentation tests and the enrichment of bacterial culture from the ferric-reducing medium showed that there exist magnetic dark materials. The transformation of the reddish-brown Fe(Ⅲ)-oxyhydroxide in the ferric-reducing medium accounts for resulting from the bacterial reaction rather than from the chemical reaction. The isolated and identified strain 30H1L has 97﹪ similarities in nucleotide to Bacillus pumilus and Bacillus sp. PB10. It can be defined that strain 30H1L belongs to genus Bacillus.
林麗華、郭政隆,台灣西北部油氣之地化特性,探採研究彙報,第21號,第286-303頁,1998年。
何信昌,苗栗五萬分之一台灣地質說明書圖第十二號,1994年。
何春蓀,台灣地質圖說明書二版三刷,經濟部中央地質調查所,台灣,第78-102頁,1997年
周瑞敦,台灣西部中新世打鹿盆地之特性及其油氣移棲,台灣石油地質,第18號,第145-189頁,1981年。
陳明珊,台西盆地之地層水地球化學研究,國立成功大學地球科學研究所碩士論文,1999年。
陳家全、李家維、楊瑞森,生物電子顯微鏡學,黃文雄,行政院國家科學委員會精密儀器發展中心,第114-123頁,1997年。
湯振輝,台灣西北部打鹿儲油砂岩曾之沉積環境與其地層封閉可能性,台灣石油地質,第10號,第121頁,1973年。
楊耿明、丁信修,苗栗地區打鹿砂層地層架構和油氣儲集,探採研究彙報,第20號,第157-175頁,1997年。
Bennasar, A., Guasp, C. and Lalucat, J. (1998) Molecular methods for the detection and identification of Pseudomonas stutzeri in pure culture and environmental samples. Microbial Ecology 35:22-33.
Boone, D.R., Liu Y., Zhao, Z.J., Balkwill, D.L., Drake, G.R., Stevens, T.O. and Aldrich, H.C. (1995) Bacillus infernus sp. Nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441-448.
Brock, T.D. and Gustafson, J. (1976) Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32:567-571.
Cumming, D.E., Caccavo, F.Jr., Spring, S. and Rosenzweig, R.F. (1999) Ferribacterium limneticum, gen. Nov., sp. Nov., an Fe(III)-reducing mi croorganism isolation from mining-impacted freshwater lake sediments. Arch. Microbiol. 171:183-188.
Cumming, D.E., March, A.W., Bostick, B., Spring, S., Caccavo, F.Jr., Fendorf, S. and Rosenzweig, R.F. (2000) Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl. Environ. Microbiol. 66:154-162.
Haridon, S. L., Reysenbach, A.L., Glenat, P., Prieur, D. and Jeanthon, C. (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223-224.
Haq, B.U., Hardenbol, J., and Vail, P.R. (1987) Chronology of fluctuation sea levels since the Triassic. Science 235:1156-1167.
Hong, H.B., Chang, Y.S., Choi, S.D., Nam, I.H. and Lee, Y.-E. (2001) Isolation and characterization of a cell-associated protein of Bacillus pumilus PH-01. Appl. Microbiol. Biotechnol. 56: 402-405.
Kashefi, K. and Lovley, D.R. (2000) Reduction of Fe(III), Mn(III), and toxic mental at 100℃ by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66:1050-1056.
Kashefi, K., Holmes, D.E., Baross, J.A. and Lovley, D.R. (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. Nov., sp. Nov., a novel Thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl. Environ. Microbiol. 69:2985-2993.
Kashefi, K., Holmes, D.E., Reysenbach, A-L. and Lovley, D.R. (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. Nov., sp. Nov. Appl. Environ. Microbiol. 68:1735-1742.
Kashefi, K., Tor, J.M., Nevin, K.P. and Lovley, D.R. (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archeae. Appl. Environ. Microbiol. 67:3275-3279.
Kieft, Y.L., Fredrickson, J.K., Onstott, T.C., Gorby, Y.A., Kostandarithes, H.M., Bailey, T.J., Kennedy, D.W., Li, S.W., Plymale, A.E., Spadoni, C.M. and Gray, M.S. (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65:1214-1221.
Lehman, R.M., Colwell, F.S., Ringelberg, D.B. and White, D.C. (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. Journal of Microbiological Methods 22:262-281.
Liu, S.V., Zhou, J., Zhang, C., Cole, D.R., Gajdarziska-Josifovska, M. and Phelps, T.J. (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106-1109.
Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews 55:259-287.
Lovley, D.R. and Philips, E.J.P. (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52:751-757.
Lovley, D.R. and Philips, E.J.P. (1986b) Organic matter minerlization with reduction of ferric iron in anaerobic sediment. Appl. Environ. Microbiol. 51:683-689.
Lower, S.K., Hochella, Jr., M.F. and Beveridge, T.J. (2001) Bacterial recongnition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292:1360-1363.
Roh, Y.R., Liu S.V., Li, G., Huang, H., Phelps, T.J. and Zhou, J. (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. 68:6013-6020.
Rosnes, J.T., Torsvik, T. and Lien, T. (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57:2302-2307.
Siefert, J.L., Larios-Sanz, M., Nakamura, L.K., Slepecky, R.A, Paul, J.H., Moore, E.R.B., Fox, G.E. and Jurtshuk, Jr., P. (2000) Phylogeny of marine Bacillus isolation from the Gulf of Mexico. Curr. Microbiol. 41:84-88.
Slobodkin, A.I., Jeanthon, C., L’Haridon, S., Nazina, T., Miroshnichenko, M. and Bonch-Osmolovskaya, E. (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr. Microbiol. 39:99-102.
Slobodkin, A.I. and Wiegel, J. (1997) Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Extremophiles 1:106-109.
Truex, M.J., Peyton, B.M., Valentine, N.B. and Gorby, Y.A. (1997) Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnology and Bioengineering 55:490-495.
Vargas, M., Kashefi, K., Blunt-Harris, E.L. and Lovely, D.R. (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65-67.