| 研究生: |
林冠瑋 Lin, Guan-wei |
|---|---|
| 論文名稱: |
電腦輔助脊椎之有限元素分析 A FINITE ELEMENT STUDY OF THE BIOMECHANICAL BEHAVIOR OF THE NONLINEAR LIGAMENTOUS THORACIC, LUMBAR AND CERVICAL SPINE |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 小面關節 、有限元素 、生物力學 、脊椎 |
| 外文關鍵詞: | facet joint, biomechanical, spine, finite element |
| 相關次數: | 點閱:106 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來利用有限元素法分析脊椎生物力學相關研究層出不窮,主要是因為運算功能強大的計算機紛紛問世,也使得原本分析需要的時間減少非常多,對於生物力學發展有明顯突破。此研究內容在於建立脊椎有限元素模型,結合簡單的生物力學探討研究。
本研究針對教學用脊椎模型,與成大醫院骨科以及醫學工程所合作,使用成大醫院斷層掃描儀器結合醫學影像軟體3D-DOCTOR,處理輸出與實體模型近似之表面模型,使用MSC.PATRAN軟體建立有限元素網格,前處理則包括手動加入椎間盤、邊界條件等步驟,Solver使用ABAQUS進行有限元素分析。
基本生物力學分析,包含了脊椎骨材料性質、邊界條件、非線性韌帶以及小面關節的接觸性質,針對幾種運動模式正常站立、彎曲、伸展、側彎、扭轉分析脊椎在這五種狀態下之行為,並比較頸椎、腰椎、胸椎、薦椎在這五種運動進行時之趨勢。
Because of the modern technology computers are devised, many studies of biomechanical are improved by finite element method. The computers will save us a lot of time to get the analytic results. In this dissertation we create the vertebrate model by finite element method and discuss all FSU by simple biomechanical.
First we use CT to scan all vertebrate, then improve the DICOM.file to 3D-Doctor, finally improve the STL.file to MSC.PATRAN. After all the processes we set materials, properties, boundary conditions.
This study uses the notable finite element method to simulate the human spine from cervical to lumbar (C2~L5). This finite element model adopts the distinct semiautomatic modeling method to build the truly accurate geometrical human spine from CT scan (not including the ribs and cervical) and contains the facets contact interactions and the programmable nonlinear ligaments. The numerical results are confirmed by the validation and convergence test. In the conclusion, the feasibility of analyzing the entire spine could be verified by this study.
Adams, M. A., Hutton, W. C., The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces, The Journal of Bone and Joint Surgery, Vol. 62-B, No. 3, pp. 368-362, 1980
Baroud, G., Nemes, J., Heini, P., and Steffen, T., Load shift of the intervertebral disc after a vertebroplasty: a finite-element study, European Spine Journal, Vol. 12, No. 4, pp. 421-426, 2003
Chazal, J., Tanguy, A., Bourges, M., Gaurel, G., Escande, G, Guillot, M., Vanneuville, G.: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomech., vol.18(3), pp.167-176, 1985.
Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J., Concepts and applications of finite element analysis, fourth edition, John Wiley & Sons, New York, 2002
Cheung, J. T.-M., Zhang, M., Chow, and D. H.-K., Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clinical Biomechanics, Vol. 18, pp. 790–799, 2003
Denozière, G., Numerical modeling of a ligamentous lumbar motion segment, M.S. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Georgia, U.S.A., 2004
Glema, A., Lodygowski, T., Kakol, W., Wierszycki, M., and Ogurkowska, M. B., Modeling of intervertebral discs in the numerical analysis of spinal segment, ECCOMAS, pp. 24-28, 2004
Goel, V. K., Kim, Y. E., Lim, T. H., and Weinstein, J. N., An analytical investigation of spinal instrumentation, Spine, Vol. 13, pp. 1003-1011, 1988
Goel, V. K., Kong, W., Han, J. S., Weinstein, J. N., and Gilbertson, L. G., A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles, Spine, Vol. 18, pp. 1591-1541, 1993
Goel, V. K., Monroe, M. S., Gilbertson, L. G., and Brinckmann, P., Interlaminar shear stress and laminae separation in a disc, Spine, Vol. 20, pp. 689-698., 1995
Goel, V. K., Ramirez, S. A., Kong, W., and Gilbertson, L. G., Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine – application of bone adaptive remodeling concepts, Journal of Biomechanical Engineering, Vol. 117, pp. 266-271, 1995
Goto, K., Tajima, N., Chosa, E., Totoribe, K., Kuroki, H., and Arizumi, Y., Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model, Journal of Orthopaedic Science, Vol. 7, No. 2, pp.243-246., 2002
Guilhem Denoziere: Numerical modeling of a ligamentous lumbar motion segment. M.D. dissertation, pp.56 para.2, Georgia I.T., 2004.
Lee, C., Kim, Y. E., Lee, C.-S., Hong, Y.-M., Jung, J., and Goel, V. K. Impact response of the intevertebral disc in a finite element model, Spine, Vol. 25, pp. 2431-2439, 2000
Mow, V., and Hayes, W. C.: Basic orthopaedic biomechanics, New York: Raven press Ltd, 1991.
Natarajan, R. N., and Andersson, G. B. J., Modeling the annular incision in a herniated lumbar intervertebral disk to study its effect on disk stability, Computers & Structures, Vol. 64, No. 5/6, pp. 1291-1297, 1997
Ng, H.-W., and Teo, E.-C., Nonlinear Finite-Element Analysis of the Lower Cervical Spine(C4–C6) Under Axial Loading, Journal of Spinal Disorders, Vol. 14, No. 3, pp. 201–210, 2001
Nordin, M., and Frankel, V. H., Basic Biomechanics of the Musculoskeletal System, third edition, Lippincott Williams and Wilkins, Philadelphia, 2001
Pitzen, T., Geisler, F. H., Matthis, D.,Müller-Storz, H., Pedersen, K., and Steudel, W.-I., The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment, European Spine Journal, Vol. 10, No. 1, pp. 23-29, 2001
Polikeit, A: Finite element analysis of the lumbar spine: Clinical application. Inaugural dissertation, University of Bern, 2002.
Polikeit, A., Ferguson S. J., Nolte L. P., and Orr T. E., Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis, European Spine Journal, Vol. 12, No. 4, pp. 413-420, 2003
Shirazi-Adl, S.A., Ahmed, A.M., Shrivastava, S.C.: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of Biomech., Vol.19, pp.331-350, 1986.
Sharma, M., Langrana, N. A., Rodriguez, J., Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response, Journal of Biomechanical Engineering, Vol. 120, pp. 118-125, 1998
Sharma, M., Langrana, N. A., Rodriguez, J., Role of ligaments and facets in lumbar spinal stability, Spine, Vol. 20, No. 8, pp. 887-900, 1995
Silva, M. J., Wang, C., Keaveny, T. M., and Hayes, W. C., Direct and computed tomography thickness measurements of he human, lumbar vertebral shell and endplate, Bone, Vol. 15, No. 4, pp. 409-414, 1994
Snell, R. S., Clinical anatomy for medical students, sixth edition, Lippincott Williams and Wilkins, Philadelphia, 2000
Tittel, K. Beschreibende und funktionelle: Anatomie des Menschen. 8. Ed. Jena, VEB Gustav-Fischer Verlag, 1990.
Wang, J.-L., Parnianpour, M. Shirazi-Adl, A., and Engin, A. E., The dynamic response of L2/L3 motion segment in cyclic axial compressive loading, Clinical Biomechanics, Vol. 13, Supplement, No. 1 pp. S16-S25, 1998
Wang, J.-L., Parnianpour, M. Shirazi-Adl, A., and Engin, A. E., Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion: Effect of Loading Rate, Spine, Vol. 25, No. 3, pp. 310-318, 2000
White III, A. A., and Panjabi, M. M., Clinical biomechanics of the spine, second edition, J.B. Lippincott Company, Philadelphia, 1990