簡易檢索 / 詳目顯示

研究生: 吳語騰
Wu, Yu-Teng
論文名稱: 利用有限差分時域法探討金屬拓樸波導中邊緣態於缺陷與幾何變化下之傳播行為
Edge Mode Propagation in Metallic Topological Waveguide with different interfaces and defects by FDTD method
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 57
中文關鍵詞: FDTD光子晶體拓樸波導
外文關鍵詞: FDTD method, Photonic Crystal, Topological Waveguide
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦於拓樸光子學中拓樸波導在非理想結構與缺陷條件下的能量傳遞與抗散射特性。隨著拓樸物理於電子系統中的快速發展,光學領域亦發展出拓樸光子絕緣體(PTI)與拓樸波導(Topological Waveguide)等概念,實現具方向性與高穩定性的導波傳輸。為探討其實用性與設計彈性,本研究以 zigzag 與 armchair 彎折結構為例,並進一步導入挖空型空氣缺陷、金屬缺陷與矽(Si)材料缺陷等不同類型障礙,模擬其對邊緣態傳遞的影響。透過三維有限時域差分法(FDTD)分析場分布與能量衰減行為,系統性評估不同結構變異對拓樸邊緣態穩定性的影響,期望提供未來拓樸波導元件設計的理論參考。

    With the rapid development of topological physics in electronic systems, concepts such as photonic topological insulators (PTIs) and topological waveguides have emerged in optics, enabling highly directional and robust wave propagation. To explore their practical applicability and design flexibility, this research investigates waveguide configurations with zigzag and armchair bends, and introduces various types of defects, including air voids, metallic inclusions, and silicon (Si) material disturbances. Using three-dimensional finite-difference time-domain (FDTD) simulations, we analyze field distributions and energy attenuation to systematically evaluate the impact of structural variations on the one way propagation property of topological edge states. The findings aim to provide theoretical guidance for the future design of robust topological photonic devices.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 序論 1 1-1 前言 1 1-2 研究動機 2 1-3 本文內容 3 第二章 研究相關理論 4 2-1 光子晶體(Photonic crystal) 4 2-2 晶格向量與倒晶格向量(Lattice vectors and reciprocal lattice vectors) 5 2-3 布洛赫定理(Bloch’s Theorem) 7 2-4 量子霍爾效應(Quantum Hall effect) 8 2-5 霍爾丹模型(Haldane model) 9 2-6 量子谷霍爾效應(Quantum Valley Hall effect) 11 2-7 在雙各項異性之下以電磁場對偶性(EM Duality) 組建偽自旋態 12 第三章 數值模擬方法 14 3-1 有限差分時域法(Finite-Difference Time-Domain method) 14 3-2 卷積完美匹配層(Convolutional Perfect Matching Layer, CPML) 15 3-3 週期性邊界條件(Periodic Boundary Condition) 17 3-4 Order N Method 18 第四章 研究結果與討論 19 4-1 三維金屬薄膜的能帶結構與模態特性 19 4-2 互補結構的能帶結構與模態特性 22 4-3 互補結構中邊緣態之傳遞行為 24 4-4 結構缺陷對邊緣態的影響 27 4-5 邊緣態於彎折路徑中的傳遞 32 4-6 金屬–空氣界面中的邊緣態特性 36 第五章 結論與未來展望 37 5-1 結論 37 5-2 未來展望 38 參考文獻 39

    [1] J. E. Moore, “The birth of topological insulators,” Nature, vol. 464, no. 7286, pp. 194–198, 2010.
    [2] L. Fu, C. L. Kane, and E. J. Mele, “Topological insulators in three dimensions,”Physical review letters, vol. 98, no. 10, p. 106 803, 2007.
    [3] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Physical review letters, vol. 45, no. 6, p. 494, 1980.
    [4] H. L. Stormer, D. C. Tsui, and A. C. Gossard, “The fractional quantum hall effect,”Reviews of Modern Physics, vol. 71, no. 2, S298, 1999.
    [5] F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensedmatter realization of the” parity anomaly”,” Physical review letters, vol. 61, no. 18, p. 2015, 1988.
    [6] C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Physical review letters, vol. 95, no. 22, p. 226 801, 2005.
    [7] S. Raghu and F. D. M. Haldane, “Analogs of quantum-hall-effect edge states in photonic crystals,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 78, no. 3, p. 033 834, 2008.
    [8] L.-H. Wu and X. Hu, “Scheme for achieving a topological photonic crystal by using dielectric material,” Physical review letters, vol. 114, no. 22, p. 223 901, 2015.
    [9] Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, “Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice,”Physical review letters, vol. 118, no. 8, p. 084 303, 2017.
    [10] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature materials, vol. 12, no. 3, pp. 233–239, 2013.
    [11] X.-D. Chen, Z.-L. Deng, W.-J. Chen, J.-R. Wang, and J.-W. Dong, “Manipulating pseudospin-polarized state of light in dispersion-immune photonic topological metacrystals,” Physical Review B, vol. 92, no. 1, p. 014 210, 2015.
    [12] D. J. Bisharat and D. F. Sievenpiper, “Electromagnetic-dual metasurfaces for topological states along a 1d interface,” Laser & Photonics Reviews, vol. 13, no. 10, p. 1 900 126, 2019.
    [13] S. John, “Strong localization of photons in certain disordered dielectric superlattices,”Physical review letters, vol. 58, no. 23, p. 2486, 1987.
    [14] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical review letters, vol. 58, no. 20, p. 2059, 1987.
    [15] X. Lv, B. Zhong, Y. Huang, et al., “Research progress in preparation and application of photonic crystals,” Chinese Journal of Mechanical Engineering, vol. 36, no. 1, p. 39, 2023.
    [16] S. F. Kettle and L. J. Norrby, “The wigner-seitz unit cell,” Journal of Chemical Education, vol. 71, no. 12, p. 1003, 1994.
    [17] J. D. Joannopoulos, R. D. Meade, J. N. Winn, and P. S. J. Russell, “Photonic crystals: Molding the flow of light,” Nature, vol. 381, no. 6580, pp. 290–290, 1996.
    [18] M. Orlita and M. Potemski, “Dirac electronic states in graphene systems: Optical spectroscopy studies,” Semiconductor Science and Technology, vol. 25, no. 6, p. 063 001, 2010.
    [19] S. Lahiri and S. Basu, “Second order topology in a band engineered chern insulator,”Scientific Reports, vol. 14, no. 1, p. 1880, 2024.
    [20] H. Xue, Y. Yang, and B. Zhang, “Topological valley photonics: Physics and device applications,” Advanced Photonics Research, vol. 2, no. 8, p. 2 100 013, 2021.
    [21] W.-J. Chen, Z.-Q. Zhang, J.-W. Dong, and C. T. Chan, “Symmetry-protected transport in a pseudospin-polarized waveguide,” Nature communications, vol. 6, no. 1, p. 8183, 2015.
    [22] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966.
    [23] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.
    [24] J. A. Roden and S. D. Gedney, “Convolution pml (cpml): An efficient fdtd implementation of the cfs–pml for arbitrary media,” Microwave and optical technology letters, vol. 27, no. 5, pp. 334–339, 2000.
    [25] A. Taflove, S. C. Hagness, and M. Piket-May, “Computational electromagnetics: The finite-difference time-domain method,” The Electrical Engineering Handbook, vol. 3, no. 629-670, p. 15, 2005.

    無法下載圖示 校內:2027-08-31公開
    校外:2027-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE