簡易檢索 / 詳目顯示

研究生: 王耀陞
Wang, Yao-sheng
論文名稱: 複合材料薄壁構件受扭力及軸力載重之非線性分析
Nonlinear Analysis of Thin-Walled Composite Box Beam under Torsion and Axial Force
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 薄壁構件複合材料
外文關鍵詞: ABAQUS
相關次數: 點閱:114下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對複合材料薄壁構件受扭力及軸力載重的情況,使用一套非線性破壞分析模式,進行材料的破壞預測及分析探討。此非線性破壞分析模式主要包含三部分:1.材料破壞前的非線性組成、2.預測破壞時機的混合破壞準則、3.後破壞分析模式。
    複合材料薄壁構件破壞前的非線性行為模擬,為假設纖維複合材料單層板在軸向及側向均為彈性-塑性行為,而面內剪力使用定值剪力參數來模擬之。破壞時機的判斷則使用混合破壞準則,結合了Tsai-Wu 破壞準則和最大應力準則的優點。在後破壞行為分析中,對複合材料單層板軸向、側向和剪力方向之行為均假設成脆性破壞模式。
    對於非線性破壞分析模式所預測之結果,將與複合材料薄壁構件受扭力、軸力和集中載重作用下之實驗數據結果做比較,以驗證本論文所建議之分析模式正確且合理。
    最後,利用所建立之模型,延伸探討複合材料薄壁構件受扭力及軸力作用下,在不同邊界條件、長度、斷面尺寸、疊序和扭力結合軸力之間的交互影響關係,進而作出歸納和討論以期能應用在實務上。

    A nonlinear failure mode had been used for studying and predicting material failure under the condition of thin-walled composite box beam and subjected to combined torsion and axial force. This nonlinear failure mode including three parts: first, the nonlinear constitutive law of material before failure; second, the mixed failure criterion to predict the time of failure; third, the analysis of post failure mode.
    The simulation of nonlinear mode before failure for the thin-walled composite box beam is assumed that lamina is plastic-elastic in axial and transverse directions, and using constant shear parameter in in-plane. The mixed failure criterion, combining the excellence of Tsai-Wu theory and maximum stress theory, had been used for judge failure timing. During analyzing of post failure mode for the thin-walled composite box beam, the brittle failure mode had been adopted in axial, shear and transverse direction.
    The result of the nonlinear failure mode will compare with the experimental data of thin-walled composite box beam subjected to torsion, axial force and bending load to verify the mode in this study correct.
    Finally, using the models in this study discuss the thin-walled composite box beam under the different boundary conditions, length, section size, order of laminates, and torsion-axial forces to apply in engineering.

    論文摘要……………………………………………………………I ABSTRACT……………………………………………………………II 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 圖目錄………………………………………………………………VII 符號說明……………………………………………………………XVI 第一章 序論…………………………………………………………1 1.1 前言……………………………………………………………1 1.2 研究主題與目的………………………………………………4 第二章 複合材料疊層板之基本公式………………………………6 2.1 複合材料簡介…………………………………………………6 2.2 正向性單層板的線性應力-應變關係………………………7 2.3 正向性單層板的非線性分析模式……………………………9 2.4 單層板在任意座標的非線性應力-應變關係……………10 第三章 複合材料之破壞準則理論回顧……………………………13 3.1 前言…………………………………………………………13 3.2 破壞準則之內容……………………………………………13 3.3 極限理論概述………………………………………………14 3.3.1 最大應力準則……………………………………………14 3.3.2 最大應變準則……………………………………………16 3.4 應變能理論概述……………………………………………18 3.4.1 von Mises等向性降伏準則……………………………19 3.4.2 Tsai-Hill 破壞準則……………………………………19 3.5 多項式理論概述……………………………………………22 3.5.1 Hoffman 破壞準則………………………………………22 3.5.2 Tsai-Wu破壞準則………………………………………24 3.6 直接模式運算理論概述……………………………………26 3.6.1 Hashin-Rotem破壞準則…………………………………26 3.6.2 Hashin破壞準則…………………………………………29 3.6.3 Lee破壞準則……………………………………………30 3.6.4 Edge破壞準則……………………………………………32 3.6.5 Chang破壞準則…………………………………………34 第四章 建議之非線性破壞分析模式………………………………35 4.1 概述…………………………………………………………35 4.2 材料破壞發生前之非線性組成律…………………………36 4.3 混合破壞準則………………………………………………38 4.4 後破壞分析模式……………………………………………39 4.5 複合材料疊層板之控制方程式……………………………41 第五章 數值模型之建立與分析結果討論…………………………42 5.1 概述…………………………………………………………42 5.2 數值模型的建立……………………………………………43 5.3 材料性質描述………………………………………………44 5.4 分析模式驗證與收斂性分析………………………………46 5.5 分析內容……………………………………………………49 5.5.1 邊界條件對複合材料箱形梁受扭力的影響……………51 5.5.2 模型尺寸對複合材料箱形梁受扭力的影響……………52 5.5.3 扭力分別和軸拉、軸壓同時作用下對複合材料箱形梁的影響……57 第六章 結論與建議…………………………………………………63 6.1 結論…………………………………………………………63 6.2 建議…………………………………………………………66 參考文獻……………………………………………………………68 附圖…………………………………………………………………71 附錄…………………………………………………………………130 附錄A Fortran Subroutine Mixed Failure Criterion………131 附錄B ABAQUS Program Input File……………………………140 自述…………………………………………………………………146

    [1] Adams, D. F. and Lewis, D. F., "Experimental Strain Analysis of the losipescu Shear Test Specimen", Experimental Mechanics , pp. 352-360 ,1995.
    [2] Azzi, V.-D. and Tsai, S.-W., "Anisotropic Strength of Composite," Exp. Mech., Vol.5, pp. 283-288, 1965.
    [3] Chandra, R., Stemple, A. D. and Chopra, A. D., "Thin-Walled Composite Beam Under Bending, Torsional, and Extensional Loads", Journal of Aircraft, 27(7) pp. 619-626, 1990.
    [4] Chang, F.-K. and Lessard, L.-B., "Damage Tolerance of Laminated Composite Containing an Open Hole and Subjected to Compressive Loadings: Part Ⅱ-Experiment", Journal of Composite Materials, Vol.25, pp. 44-64, 1991.
    [5] Chattopadhyay, A., Gu, H. and Liu, Q., "Modeling of smart composite box beams with nonlinear induced strain", Composites, 30 pp. 603-612, 1999.
    [6] Chib, A., "Parametric study of low velocity impact analysis on composite tubes", 2003.
    [7] Edge, E. C., "Final Report on P.V. Funded Portion of CFC Basic Technology Programme", Bae Report SOR(P)177, October 1987, with Addendum 1, February, 1989.
    [8] Hahn, H.-T. and Tsai, S.-W., "Nonlinear Elastic Behavior of Unidirectional Composite Laminates", Journal of Composite Materials, Vol.7, pp. 102-118, 1973.
    [9] Hahn, H.-T., "Nonlinear Behavior of Laminated Composites", Journal of Composite Materials, Vol.7, pp. 257-271, 1973.
    [10] Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites", J. Appl. Mech., Vol.47, pp. 329-334, 1980.
    [11] Hill, R., "The Mathematical Theory of Plasticity", Oxford University Press, London, 1950.
    [12] Hoffman, O., “The Brittle Strength of Orthotropic Materials”, Journal of Composite Materials, Vol. 1, pp.200-206, 1967.
    [13] Hu, H.-T., “Influence of In-plane Shear Nonlinearity on Buckling and Postbuckling Responses of Composite Laminate Plates and Shells,” Journal of Composite Materials, Vol. 27, pp. 138-151, 1993.
    [14] Kenaga, D., Doyle, J.-F. and Sun, C.-T., "The Characterization of Boron/Aluminum Composite in the Nonlinear Range as an Orthotropic Elastic-Plastic Material", Journal of Composite Materials, Vol.21, pp.
    516-531, 1987.
    [15] Lahellec, N., and Suquet, P., “Non-linear composites: A linearization procedure, exact to second-order in contrast and for which the strain-energy and affine formulations coincide”, C. R. Mecanique 332, pp. 693–700, 2004.
    [16] Lee, J.-D., "Three Dimensional Finite Element Analysis of Damage Accumulation in Composite Laminate", Computers & Structures, Vol.15, pp. 335-350, 1982.
    [17] Narayanaswami, R. and Adelman, H. M., “Evaluation of the Tensor Polynomial and Hoffman Strength Theories for Composite Materials”, Journal of Composite Materials, Vol.11, 1977, pp.366-377.
    [18] Machado, S. P. and Cortinez, V. H., "Non-linear model for stability of thin-walled composite beam with shear deformation", Thin-Walled Structures, 43 pp. 1615-1645, 2005.
    [19] Mindlin, R. D., “Influence of Rotator Inertia and Shear Flexural Motions of Isotropic Elastic Plate”, J. Appl. Mech., Vol.18, pp.31-38, 1951.
    [20] Moulinec, H., and Suquet, P., “Intraphase strain heterogeneity in non-linear composites:Acomputational approach”, Eur. J. Mech. A/Solids 22, pp. 751–770, 2003.
    [21] Petit, P.-H. and Waddoups, M.-E., "A Method of Predicting the Nonlinear Behavior of Laminated Composites", Journal of Composite Materials, Vol.3, pp. 2-19, 1969.
    [22] Rotem, A. and Nelson, H.-G., "Fatigue Behavior of Graphite-Epoxy Laminate at Elevated Temperatures", ASTM STP 723, pp. 152-173, 1981.
    [23] Rowlands, R.-E., "Strength (Failure) Theories and Their Experimental Correlation", Failure Mechanics of Composites, pp. 71-125, 1985.
    [24] Song, O. and Jeong, N.-H., "Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring Bending-Bending Elastic Coupling", Journal of Sound and Vibration, 237(3), pp. 513-533, 2000.
    [25] Song, O. and Livrescu, L., "Free Vibration of Anisotropic Composite Thin-Walled Beam of Closed Cross-Section Contour", Journal of Sound and Vibration, 167(1), pp. 129-147, 1993.
    [26] Sun, C.-T. and Chen, J.-L., "A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composite", Journal of Composite Materials, Vol.23, pp. 1009-1020, 1989.
    [27] Tsai, S.-W. and Wu, E.-M., "A General Theory of Strength for Anisotropic Materials", Journal of Composite Materials, Vol.5, pp. 58-80, 1971.
    [28] Vaziri, R., Olson, M.-D. and Anderson, D.-L., "A Plasticity-Based Constitutive Model for Fiber-Reinforced Composite Laminates", Journal of Composite Materials, Vol.25, pp. 512-535, 1991.
    [29] 林文賓,『纖維複材疊層板在單軸及雙軸張力載重下之非線性破壞分析』,國立成功大學土木工程學系,博士論文,中華民國九十年十二月。
    [30] 柯龍聖,『纖維複材疊層板在單軸壓力載重下之非線性破壞分析』,國立成功大學土木工程學系,碩士論文,中華民國九十一年六月。
    [31] 杜方泰,『纖維複材疊層板在雙軸載重下之非線性破壞分析』,國立成功大學土木工程學系,碩士論文,中華民國九十二年六月。
    [32] 李凱元,『開孔纖維複材疊層板受單軸壓力之非線性破壞分析』,國立成功大學土木工程學系,碩士論文,中華民國九十三年六月。
    [33] 張書維,『纖維複材疊層板在螺栓集中載重下之非線性破壞分析』,國立成功大學土木工程學系,碩士論文,中華民國九十四年六月。
    [34] 劉嘉文,『開孔纖維複材疊層板在雙軸張應力之非線性破壞分析』,國立成功大學土木工程學系,碩士論文,中華民國九十四年六月。
    [35] 洪筱君,『複合材料圓柱殼受扭力之非線性分析』,國立成功大學土木工程學系,碩士論文,中華民國九十五年六月。
    [36] 易家伶,『含孔複合材料圓柱殼受扭力及軸力載重之非線性分析』,國立成功大學土木工程學系,碩士論文,中華民國九十六年六月。

    下載圖示 校內:立即公開
    校外:2008-07-31公開
    QR CODE