| 研究生: |
郭加敏 Kuok, Ka-Man |
|---|---|
| 論文名稱: |
以動物實驗建立模式---棕色脂肪活化對肝臟部分切除術後產生的脂肪肝之影響 Brown fat activation-altered liver Steatosis in an animal model of partial hepatectomy |
| 指導教授: |
沈延盛
Shan, Yan-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 非酒精性脂肪肝病 、肝切除 、肝臟再生 、寒冷環境暴露 、棕色脂肪 |
| 外文關鍵詞: | Nonalcoholic Fatty Liver Disease (NAFLD), Hepatectomy, Liver regeneration, Cold exposure, Brown fat |
| 相關次數: | 點閱:50 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床上活體肝臟移植中,器官捐贈者遭到大面積的肝臟切除術後,因手術後將面臨非酒精性脂肪肝病(NAFLD)和相關的代謝性疾病的影響,有可能進展為脂肪肝炎,甚至肝癌等肝臟疾病。本研究中利用暴露於寒冷環境的治療方法增進棕色脂肪的增生,並且達到改善這種不可逆的肝臟病變的進程。在我們的研究中,首先建立一個肝臟切除後的動物模型,來確認肝臟再生的情形。利用C57BL/6小鼠,在正常飲食餵養,室溫飼養至8週大,並接受肝臟切除手術以誘導肝臟脂肪病變的發生。再來就是想改善這種不可逆的脂肪肝病變,使用另一種實驗方法是將小鼠每天暴露在4 ℃ 環境下12小時促進活化棕色脂肪組織的增生,並增進改善肝臟再生過程中肝臟脂肪變性的變化。我們發現到暴露於寒冷的環境中對肝臟再生有保護作用。首先,它可以對抗肝切除後引起的肝臟脂肪變性、肝臟指數昇高和代謝異常。其次,暴露於冷環境中可誘發棕色脂肪的增生以及棕色脂肪UCP1的表現增加。同時,寒冷暴露會調降肝臟缺氧和肝臟脂肪代謝等因素,例如HIF1和PPARγ。第三,我們的研究結果顯示冷暴露不會阻礙肝臟再生。因此,我們的研究證實利用冷環境的暴露治療對不可逆的肝功能障礙、相關的代謝性疾病和 NAFLD得以改善的希望。
In living liver transplantation, donors with liver damage will have a large area of liver parenchyma removed, and they will face the impact of postoperative nonalcoholic fatty liver disease (NAFLD) and metabolic diseases after surgery. It is hoped that the treatment method of cold environment exposure can change this irreversible liver disease process. In our experiments, an animal model was first established. C57BL/6 mice were fed a normal diet, raised at room temperature until they were 8 weeks old, and underwent significant liver resection surgery to induce liver steatosis. The other is exposure to 4 ℃ for 12 hours a day. Endogenous brown adipose tissue is activated by cold exposure. Improve the changes in hepatic steatosis during liver regeneration. We found that cold exposure has a protective effect on the liver. First, it counteracts liver steatosis, liver index, and metabolic abnormalities caused by liver resection. Secondly, cold exposure reverses white fat's proliferation and brown fat's direction, and the expression of UCP1 in brown fat is up-regulated. At the same time, cold exposure downregulates factors such as liver hypoxia and liver fat metabolism, such as HIF1 and PPARγ. Third, our results indicate that cold exposure does not impede liver regeneration. Therefore, our study reveals the hope of using cold exposure to treat irreversible liver dysfunction, metabolic diseases, and NAFLD.
1. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021;18(1):45-56 doi 10.1038/s41423-020-00558-8.
2. Sydor S, Gu Y, Schlattjan M, Bechmann LP, Rauen U, Best J, et al. Steatosis does not impair liver regeneration after partial hepatectomy. Lab Invest 2013;93(1):20-30 doi 10.1038/labinvest.2012.142.
3. Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J Hepatobiliary Pancreat Sci 2011;18(1):13-22 doi 10.1007/s00534-010-0304-2.
4. Wang M, Li G, Yang Z, Wang L, Zhang L, Wang T, et al. Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor gamma promotes chemoresistance of non-small cell lung cancer. Oncotarget 2017;8(5):8083-94 doi 10.18632/oncotarget.14097.
5. Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, et al. PPAR-gamma signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023;245:108391 doi 10.1016/j.pharmthera.2023.108391.
6. Pan J, Zhou W, Xu R, Xing L, Ji G, Dang Y. Natural PPARs agonists for the treatment of nonalcoholic fatty liver disease. Biomed Pharmacother 2022;151:113127 doi 10.1016/j.biopha.2022.113127.
7. Narravula S, Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 2001;166(12):7543-8 doi 10.4049/jimmunol.166.12.7543.
8. Mae J, Nagaya K, Okamatsu-Ogura Y, Tsubota A, Matsuoka S, Nio-Kobayashi J, et al. Comparative Transcriptome Cells Regulate Brown Adipogenesis Through Secretory Factors During the Postnatal White-to-Brown Conversion of Adipose Tissue in Syrian Hamsters. Front Cell Dev Biol 2021;9:698692 doi 10.3389/fcell.2021.698692.
9. Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, Tsubota A, Saito M, Kimura K, et al. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism 2020;113:154396 doi 10.1016/j.metabol.2020.154396.
10. Seki T, Yang Y, Sun X, Lim S, Xie S, Guo Z, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 2022;608(7922):421-8 doi 10.1038/s41586-022-05030-3.
11. D. W. Cold-Activated Brown Adipose Tissue in Healthy Men. NEJM 2009.
12. Marlatt KL, Ravussin E. Brown Adipose Tissue: an Update on Recent Findings. Curr Obes Rep 2017;6(4):389-96 doi 10.1007/s13679-017-0283-6.
13. Kamali C, Kamali K, Brunnbauer P, Splith K, Pratschke J, Schmelzle M, et al. Extended liver resection in mice: state of the art and pitfalls-a systematic review. Eur J Med Res 2021;26(1):6 doi 10.1186/s40001-020-00478-3.
14. Madrahimov N, Dirsch O, Broelsch C, Dahmen U. Marginal hepatectomy in the rat: from anatomy to surgery. Ann Surg 2006;244(1):89-98 doi 10.1097/01.sla.0000218093.12408.0f.
15. Vetelainen R, van Vliet AK, van Gulik TM. Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy. Ann Surg 2007;245(1):44-50 doi 10.1097/01.sla.0000225253.84501.0e.