| 研究生: |
曾緯中 Tseng, Wei-Chung |
|---|---|
| 論文名稱: |
血管新生與淋巴新生因子於乳癌小鼠的動態影響 Dynamic Expression of Angiogenic and Lymphangiogenic Factors in Breast Tumor-bearing Mice |
| 指導教授: |
蔡美玲
Tsai, Mei-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 血管新生 、淋巴管新生 、癌細胞轉移 、免疫細胞 、細胞骨架 |
| 外文關鍵詞: | angiogenesis, lymphangiogenesis, metastasis, immune cells, cytoskeleton |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌細胞本身之基因改變及宿主本身之發炎反應均有助於惡性腫瘤遠端轉移及癌細胞的生長。發炎反應藉由血管內皮生細胞長因子A所誘發的血管新生及血管內皮生細胞長因子C所誘發的淋巴管新生促進惡性腫瘤轉移。為進一步了解宿主本身之發炎反應如何影響腫瘤細胞在特定遠端器官之轉移,本研究使用皮下注射癌細胞所誘發乳癌生長小鼠模式探討受腫瘤細胞活化之免疫細胞對於遠端轉移器官血管新生及淋巴管新生的影響。結果顯示,在原位癌處巨噬細胞標誌(F4/80)隨腫瘤大小增加而上升。血管內皮生細胞長因子A、血管內皮生細胞長因子受體2、血管內皮黏著分子、血管內皮生細胞長因子C、血管內皮生細胞長因子受體3及淋巴管内皮透明質酸受體1的表現量均隨時間增加而上升。在檢驗肝、脾與肺臟等遠端器官後,在五週之腫瘤小鼠中三種器官均增大,而肺部血管內皮黏著分子表現量較肝、脾臟低且在肺臟在外觀及組織切片中發現有許多轉移癌。與正常的小鼠比較後,腫瘤鼠其肺臟肺泡沖洗液中淋巴球的比例隨著時間增加而上升,但巨噬細胞的比例及總細胞數則無改變。肺臟中,腫瘤鼠F4/80表現量僅在第五週上升,血管新生相關因子(如血管內皮生細胞長因子A、血管內皮生細胞長因子受體2)及淋巴管新生相關因子(如血管內皮生細胞長因子C、血管內皮生細胞長因子受體3及淋巴管内皮透明質酸受體1)表現量在第三週沒有改變,顯示血管新生與淋巴新生在第三週並未在肺臟中出現。地塞米松是一種糖皮質類固醇,可抑制巨噬細胞及第一型T輔助細胞並活化第二型T輔助細胞,接下來使用地塞米松來進一步證明活化的宿主免疫細胞對於遠端轉移器官中血管新生及淋巴管新生的影響。地塞米松降低原生癌處血管內皮生細胞長因子A表現但不影響血管內皮生細胞長因子受體2、血管內皮生細胞長因子C及血管內皮生細胞長因子受體3表現量。在肺臟中,地塞米松則增加血管內皮黏著分子,血管內皮生細胞長因子C及血管內皮生細胞長因子受體3表現,而不改變血管內皮生細胞長因子A、血管內皮生細胞長因子受體2及淋巴管内皮透明質酸受體1的表現量。總論之,地塞米松降低原生癌處血管內皮生細胞長因子A表現量顯示巨噬細胞的活化與原生癌處內皮生細胞長因子A所誘發的血管新生有關。而在肺臟中,地塞米松增加血管內皮黏著分子表現量但巨噬細胞數目不變,顯示在肺臟中可能藉由活化第一型T輔助細胞增加肺微血管通透性並增加癌細胞轉移至肺臟的專一性。定量蛋白質體結果更進一步顯示,在三週腫瘤鼠肺臟中與細胞骨架相關蛋白如細胞黏附蛋白及α輔肌動蛋白均下降,而腫瘤鼠中與蛋白合成相關蛋白及蛋白酶抑制劑胰蛋白酶抑制劑等蛋白均受到抑制,可以進一步解釋在腫瘤鼠肺臟中,細胞與細胞基質的黏附受到破壞、蛋白質生合成以及蛋白酶抑制劑受到抑制的結果將導致肺臟嚴重轉移並導致肺臟的結構崩解。
The secondary growth of metastasized tumors in the distal sites depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment in hosts. Because inflammation is associated with VEGFA-induced angiogenesis and VEGFC-induced lymphangiogenesis, the purpose of our study was to explore if the activation of immune cells by implanted tumor cells facilitated organ-specific growth of metastasized tumors through both VEGFA-mediated angiogenesis and VEGFC-mediated lymphangiogenesis. The subcutaneously-transplantated breast tumor bearing mice was used as our experimental model. As our data indicated, F4/80 (a macrophage marker) in the primary tumors was increased with the increases in tumor size, VEGFA, VEGFR2, VE-cadherine, VEGFC, VEGFR3 and LYVE-1. Of internal organs examined, three major organs, including spleen, liver, and lung, became enlarged. Among these three organs, lungs contained the greatest number of tumor nodules and expressed the lowest level of VE-cadherin. When compared with the lung of control mice, that of tumor-bearing mice showed a time-dependent increase in tumor size and the ratios of lymphocytes and neutrophils in the bronchoalveolar fluid (BALF) and the decreased expression of VE-cadherin without changing total cell number and total protein in BALF. No significant changes in the expression of angiogenesis-related factors (VEGFA, VEGFR2) and lymphangiogenesis-related factors (VEGFC, VEGFR3 and LYVE-1) in wk 3 were followed by the increased expression of F4/80 in wk 5, suggesting that the angiogenesis and lymphangiogenesis did not occur at wk 3. Dex, a glucocorticoid analogue, which inactivates macrophages, neutrophils and Th1 lymphocytes, was used to examine whether activated immune cells were involved in angiogenesis and lymphangiogenesis during metastasis. At primary sites, dex decreased VEGFA with no effect on VE-cadherin. In distal lung, dex increased VE-cadherin, VEGFC and VEGFR3 with no effects on VEGFA, VEGFR2 and LYVE-1. In conclusion, the decreased expression of VEGFA by dex at primary sites suggests that the activation of macrophages may be involved in VEGFA-induced angiogenesis in primary tumor metastasis. The reversal effect of dex on the decreased expression of VE-cadherin in lungs where macrophages were not increased may indicate the activation of Th1 cells in lungs which may contribute the decreased integrity of pulmonary capillaries and lung-specific growth of metastasized tumors. In our quantitative proteomics data, the cytoskeleton proteins such as vinculin and α-actinin were decreased, the proteases inhibitors such as α1 antitrypsin, contrapsin and A3K as well as protein synthesis related proteins were also decreased in lung in 3 week tumor bearing mice, further revealing that the destruction of cell-cell and cell-ECM adhesion and decreased in the expression protease inhibitors and the protein synthesis may result in serious lung metastasis and lung structure damage.
1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009.
2. Fry WA, Phillips JL, Menck HR. Ten-year survey of lung cancer treatment and survival in hospitals in the United States: a national cancer data base report. Cancer 1999;86(9):1867-76.
3. Allred DC, Clark GM, Elledge R, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 1993;85(3):200-6.
4. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, 3rd, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100(15):8933-8.
5. Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 2004;23(57):9247-58.
6. Huang C, Ma WY, Goranson A, Dong Z. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 1999;20(2):237-42.
7. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 2007;67(2):563-72.
8. Repesh LA. A new in vitro assay for quantitating tumor cell invasion. Invasion Metastasis 1989;9(3):192-208.
9. Banka CL, Lund CV, Nguyen MT, Pakchoian AJ, Mueller BM, Eliceiri BP. Estrogen induces lung metastasis through a host compartment-specific response. Cancer Res 2006;66(7):3667-72.
10. Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6(1):17-32.
11. Clarke R. Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat 1996;39(1):1-6.
12. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 1996;39(1):7-20.
13. Zhang R, Haag JD, Gould MN. Reduction in the frequency of activated ras oncogenes in rat mammary carcinomas with increasing N-methyl-N-nitrosourea doses or increasing prolactin levels. Cancer Res 1990;50(14):4286-90.
14. Clarke R. Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 1996;39(1):69-86.
15. Brunner N, Spang-Thomsen M, Cullen K. The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer. Breast Cancer Res Treat 1996;39(1):87-92.
16. Javier R, Shenk T. Mammary tumors induced by human adenovirus type 9: a role for the viral early region 4 gene. Breast Cancer Res Treat 1996;39(1):57-67.
17. Fluck MM, Haslam SZ. Mammary tumors induced by polyomavirus. Breast Cancer Res Treat 1996;39(1):45-56.
18. Johnson MD, Kenney N, Stoica A, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 2003;9(8):1081-4.
19. Casey G. The BRCA1 and BRCA2 breast cancer genes. Curr Opin Oncol 1997;9(1):88-93.
20. Dixon JM, Page DL, Anderson TJ, et al. Long-term survivors after breast cancer. Br J Surg 1985;72(6):445-8.
21. Sleeman JP, Cremers N. New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment. Clin Exp Metastasis 2007;24(8):707-15.
22. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860-7.
23. de la Cruz-Merino L, Grande-Pulido E, Albero-Tamarit A, Codes-Manuel de Villena ME. Cancer and immune response: old and new evidence for future challenges. Oncologist 2008;13(12):1246-54.
24. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357(9255):539-45.
25. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004;14(6):433-9.
26. Yang CR, Hsieh SL, Ho FM, Lin WW. Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol 2005;174(3):1647-56.
27. Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 2007;27(12):2514-23.
28. Joris I, Cuenoud HF, Doern GV, Underwood JM, Majno G. Capillary leakage in inflammation. A study by vascular labeling. Am J Pathol 1990;137(6):1353-63.
29. Dinarello CA. Blocking IL-1 in systemic inflammation. J Exp Med 2005;201(9):1355-9.
30. Rosenthal TC, Silverstein DA. Fever. What to do and what not to do. Postgrad Med 1988;83(8):75-84.
31. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006;72(11):1605-21.
32. Cotran RS. Delayed and prolonged vascular leakage in inflammation. 3. Immediate and delayed vascular reactions in skeletal muscle. Exp Mol Pathol 1967;6(2):143-55.
33. Cotran RS, Majno G. The Delayed and Prolonged Vascular Leakage in Inflammation. I. Topography of the Leaking Vessels after Thermal Injury. Am J Pathol 1964;45:261-81.
34. Humphrey DM, McManus LM, Hanahan DJ, Pinckard RN. Morphologic basis of increased vascular permeability induced by acetyl glyceryl ether phosphorylcholine. Lab Invest 1984;50(1):16-25.
35. Litman GW, Cannon JP, Dishaw LJ. Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 2005;5(11):866-79.
36. Zeidman I, Copeland BE, Warren S. Experimental studies on the spread of cancer in the lymphatic system. II. Absence of a lymphatic supply in carcinoma. Cancer 1955;8(1):123-7.
37. Alberts, Bruce, Johnson A, et al. Molecular Biology of the Cell: 4th Edition. New York and London: Garland Science; 2002.
38. Robinson-Smith TM, Isaacsohn I, Mercer CA, et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 2007;67(12):5708-16.
39. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res 2006;4(4):221-33.
40. Aharinejad S, Paulus P, Sioud M, et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 2004;64(15):5378-84.
41. Huang H, Li F, Gordon JR, Xiang J. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res 2002;62(7):2043-51.
42. Taranova AG, Maldonado D, 3rd, Vachon CM, et al. Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res 2008;68(20):8582-9.
43. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007;9(4):212.
44. Brown LF, Detmar M, Claffey K, et al. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 1997;79:233-69.
45. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9(6):653-60.
46. Chang LK, Garcia-Cardena G, Farnebo F, et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A 2004;101(32):11658-63.
47. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002;20(21):4368-80.
48. Dvorak HF. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol 2003;162(6):1747-57.
49. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999;237:97-132.
50. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669-76.
51. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29(6 Suppl 16):15-8.
52. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002;196(11):1497-506.
53. Boocock CA, Charnock-Jones DS, Sharkey AM, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 1995;87(7):506-16.
54. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994;55(3):410-22.
55. Verheul HM, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997;3(12 Pt 1):2187-90.
56. Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995;270(21):12607-13.
57. Iijima K, Yoshikawa N, Connolly DT, Nakamura H. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int 1993;44(5):959-66.
58. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006;63(5):601-15.
59. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002;85(2):357-68.
60. Mukherjee S, Tessema M, Wandinger-Ness A. Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res 2006;98(6):743-56.
61. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006;8(11):1223-34.
62. Wallez Y, Cand F, Cruzalegui F, et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 2007;26(7):1067-77.
63. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci 2003;28(9):488-94.
64. Carmeliet P, Collen D. Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr Top Microbiol Immunol 1999;237:133-58.
65. Mukhopadhyay D, Zeng H. Involvement of G proteins in vascular permeability factor/vascular endothelial growth factor signaling. Cold Spring Harb Symp Quant Biol 2002;67:275-83.
66. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001;20(17):4762-73.
67. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL. VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 2002;98(6):946-51.
68. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005;115(2):247-57.
69. Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 2006;13(4):1033-67.
70. Carrera MP, Ramirez-Exposito MJ, Valenzuela MT, Garcia MJ, Mayas MD, Martinez-Martos JM. Glutamyl- but not aspartyl-aminopeptidase activity is modified in serum of N-methyl nitrosourea-induced rat mammary tumours. Anticancer Res 2004;24(2B):801-5.
71. Suganuma T, Ino K, Shibata K, et al. Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor-stromal interaction and vascular endothelial growth factor. Lab Invest 2004;84(5):639-48.
72. Plate KH, Breier G, Millauer B, Ullrich A, Risau W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993;53(23):5822-7.
73. Carton Y, Frey F, Stanley DW, Vass E, Nappi AJ. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J Parasitol 2002;88(2):405-7.
74. Poon M, Gertz SD, Fallon JT, et al. Dexamethasone inhibits macrophage accumulation after balloon arterial injury in cholesterol fed rabbits. Atherosclerosis 2001;155(2):371-80.
75. Tjandra K, Kubes P, Rioux K, Swain MG. Endogenous glucocorticoids inhibit neutrophil recruitment to inflammatory sites in cholestatic rats. Am J Physiol 1996;270(5 Pt 1):G821-5.
76. Franchimont D, Galon J, Gadina M, et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 2000;164(4):1768-74.
77. Ishibashi T, Miki K, Sorgente N, Patterson R, Ryan SJ. Effects of intravitreal administration of steroids on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 1985;103(5):708-11.
78. Gross J, Azizkhan RG, Biswas C, Bruns RR, Hsieh DS, Folkman J. Inhibition of tumor growth, vascularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc Natl Acad Sci U S A 1981;78(2):1176-80.
79. Hoepelman AI, Van der Flier M, Coenjaerts FE. Dexamethasone downregulates Cryptococcus neoformans-induced vascular endothelial growth factor production: a role for corticosteroids in cryptococcal meningitis? J Acquir Immune Defic Syndr 2004;37(3):1431-2.
80. Wolff JE, Guerin C, Laterra J, et al. Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Res 1993;604(1-2):79-85.
81. Jubb AM, Pham TQ, Hanby AM, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol 2004;57(5):504-12.
82. Badie B, Schartner JM, Paul J, Bartley BA, Vorpahl J, Preston JK. Dexamethasone-induced abolition of the inflammatory response in an experimental glioma model: a flow cytometry study. J Neurosurg 2000;93(4):634-9.
83. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001;7(3):462-8.
84. Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006;9(3):209-23.
85. Akagi K, Ikeda Y, Miyazaki M, et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 2000;83(7):887-91.
86. Hashimoto I, Kodama J, Seki N, et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer 2001;85(1):93-7.
87. Murate T, Banno Y, K TK, et al. Cell type-specific localization of sphingosine kinase 1a in human tissues. J Histochem Cytochem 2001;49(7):845-55.
88. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192-8.
89. Yano A, Fujii Y, Iwai A, Kawakami S, Kageyama Y, Kihara K. Glucocorticoids suppress tumor lymphangiogenesis of prostate cancer cells. Clin Cancer Res 2006;12(20 Pt 1):6012-7.
90. Watari K, Nakao S, Fotovati A, et al. Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem Biophys Res Commun 2008;377(3):826-31.
91. CLINICO-PATHOLOGICAL exercise. Case presented at the Eastern Maine General Hospital, Bangor, Maine; death due to bronchogenic carcinoma with metastases, verrucous endocarditis of mitral valve, thrombosis of right femoral and pelvic veins. J Maine Med Assoc 1950;41(12):463-7; passim.
92. Crow J, Slavin G, Kreel L. Pulmonary metastasis: a pathologic and radiologic study. Cancer 1981;47(11):2595-602.
93. Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 1992;10(3):191-9.
94. Zlotnik A. Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 2006;13:191-9.
95. Pawlak G, Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001;11(1):41-7.
96. Nishinaka K, Fukuda Y. Changes in extracellular matrix materials in the uterine myometrium of rats during pregnancy and postparturition. Acta Pathol Jpn 1991;41(2):122-32.
97. Albert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell, 4th Ed. New York: Garland Science; 2002.
98. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991;251(5000):1451-5.
99. Kemler R. Classical cadherins. Semin Cell Biol 1992;3(3):149-55.
100. Gumbiner BM. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron 1993;11(4):551-64.
101. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993;9(9):317-21.
102. Nagafuchi A, Tsukita S, Takeichi M. Transmembrane control of cadherin-mediated cell-cell adhesion. Semin Cell Biol 1993;4(3):175-81.