簡易檢索 / 詳目顯示

研究生: 李恩睿
Lee, En-Jui
論文名稱: 電商網站顧客行為之分析及預測
The analysis and prediction of customers’ behaviors on a E-commerce website
指導教授: 徐立群
Shu, Lih-Chyun
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 44
中文關鍵詞: 流程探勘機器學習電子商務
外文關鍵詞: process mining, machine learning, e-commerce
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在網路快速發展的時代網路購物日漸普及,電子商務網站記錄中不斷累積使用者相關紀錄,如何有效運用大量資料成為重要的課題。過去有相關研究運用網站上的使用者瀏覽紀錄進行研究,有學者透過流程探勘分析使用者瀏覽軌跡,也有研究使用機器學習方法瀏覽階段的購買與否,而資料變數可由瀏覽紀錄生成,但以往的研究使用到實際紀錄並不多,即使為實際瀏覽資料也沒有太多的樣本。本研究資料來自台灣一家線上零售平台提供為期三個月的使用者於網站的瀏覽紀錄,本研究目標為剖析使用者瀏覽行為模式並建立相關預測模型,我們透過分析不同客群瀏覽特性、使用流程探勘工具診斷瀏覽過程、運用機器學習預測購買結果,最後整合上述結果回饋有價值的資訊給線上零售平台業者。

    The purpose of this research is trying to find out valuable information by figuring out user browsing process and predicting user behavior. In this study, a dataset provided by an online retailer in Taiwan contains three months click-stream information. We analyze the browsing behavior features of different age and gender, apply a process mining tool to diagnose user session, establish machine learning model to predict users' future behaviors in terms of whether they will buy or not. Consequently, we present the valuable integrated outcome to manager as feedback.

    第一章、緒論 1 1.1 研究背景與動機 1 1.2 研究流程 4 第二章、文獻探討 5 2.1 網站分析 5 2.2 網頁探勘 5 2.3 流程探勘 6 2.3.1 流程探勘方式 7 2.4 機器學習 9 2.4.1決策樹 10 2.4.2 隨機森林 11 2.4.3 類神經網路 11 第三章、研究方法 13 3.1 原始資料描述 13 3.2 資料預處理 14 3.3 業者訪談 16 3.4 流程探勘方法 17 3.5 機器學習方法 18 3.5.1 變數生成與預測目標 19 3.5.2 資料集取樣 20 3.5.3 參數調整 21 3.5.4 評估方法 22 第四章、研究分析與結果 25 4.1 瀏覽樣貌描述分析 25 4.2 瀏覽路徑診斷分析 30 4.3 機器學習預測分析 36 第五章、結論 41 第六章、參考文獻 43

    1.Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees: CRC press.
    2.Dietterich, T. G. (2000). Ensemble methods in machine learning. Multiple classifier systems, 1857, 1-15.
    3.Gartner. (2017). 2017 Planning Guide for Data and Analytics. Retrieved from Gartner Technical Professional Advice:
    4.Ho, T. K. (1995). Random decision forests. Paper presented at the Document Analysis and Recognition, 1995., Proceedings of the Third International Conference on.
    5.Hop, W., & van de Velden, M. (2013). Web-shop order prediction using machine learning. Masters Thesis, Erasmus University Rotterdam,
    6.Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. In.
    7.Kumar, L., Singh, H., & Kaur, R. (2012). Web analytics and metrics: a survey. Paper presented at the Proceedings of the International Conference on Advances in Computing, Communications and Informatics.
    8.Montgomery, A. L., Li, S., Srinivasan, K., & Liechty, J. C. (2004). Modeling online browsing and path analysis using clickstream data. Marketing science, 23(4), 579-595.
    9.Olbrich, R., & Holsing, C. (2011). Modeling consumer purchasing behavior in social shopping communities with clickstream data. International Journal of Electronic Commerce, 16(2), 15-40.
    10.Poggi, N., Muthusamy, V., Carrera, D., & Khalaf, R. (2013). Business process mining from e-commerce web logs. In Business Process Management (pp. 65-80): Springer.
    11.Rokach, L., & Maimon, O. (2008). Data mining with decision trees: theory and applications: World Scientific.
    12.Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. Retrieved from
    13.Samuel, A. L. (2000). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 44(1.2), 206-226.
    14.Sharma, K., Shrivastava, G., & Kumar, V. (2011). Web mining: Today and tomorrow. Paper presented at the Electronics Computer Technology (ICECT), 2011 3rd International Conference on.
    15.Sılahtaroğlu, G., & Dönertaşli, H. (2015). Analysis and prediction of Ε-customers' behavior by mining clickstream data. Paper presented at the Big Data (Big Data), 2015 IEEE International Conference on.
    16.Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142.
    17.van der Aalst, W. M. (2016). Process mining: data science in action: Springer.
    18.van der Aalst, W. M., & Gunther, C. W. (2007). Finding structure in unstructured processes: The case for process mining. Paper presented at the Application of Concurrency to System Design, 2007. ACSD 2007. Seventh International Conference on.
    19.Waisberg, D., & Kaushik, A. (2009). Web Analytics 2.0: empowering customer centricity. The original Search Engine Marketing Journal, 2(1), 5-11.
    20.Weijters, A., van Der Aalst, W. M., & De Medeiros, A. A. Process mining with the heuristics miner-algorithm.
    21.Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68.
    22.Zheng, G., & Peltsverger, S. (2015). Web Analytics Overview. In Encyclopedia of Information Science and Technology, Third Edition (pp. 7674-7683): IGI Global.

    無法下載圖示 校內:2023-03-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE