簡易檢索 / 詳目顯示

研究生: 徐肇康
Tu, Trieu-Khang
論文名稱: 具外擾補償之觸覺雙向控制應用於虛擬實境
Haptic Bilateral Control with Disturbance Compensation Applied in Virtual Reality
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 雙向控制觸覺回饋撓性傳動元件外擾補償虛實整合
外文關鍵詞: haptic bilateral control, magnetic coupling, disturbance compensation, virtual reality
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑於人機互動系統對擬真觸覺回饋功能的需求,整合阻抗控制與同動控制之雙向控制技術已廣泛被應用,透過主、從雙端間的位置及力量訊號回授,便能同時達到雙端的運動狀態同步及觸覺回饋。然而,人機互動操作需同時考量使用者的施力、操作機台阻力及環境負載,如何在雙向控制架構中,辨別系統的不同受力,將是核心的關鍵技術。因此,本論文提出於雙向控制系統採用磁性聯軸器,藉由撓性傳動元件於動力傳遞兩端旋轉角度的偏差量,經由系統建模計算使用者之受力,使磁性聯軸器同時兼具傳動及扭力感測的功能。本論文亦搭配外擾觀測器設計,觀測機台的外擾阻力並作為外擾前饋補償,使操作者能感受到更真實的觸覺體驗。透過實體的轉向機構及軟體系統之虛實整合測試平台,驗證所提之撓性傳動設計於雙向控制系統技術的可行性。

    On the demand for realizing the haptic feedback function besides position following for better experience in human-machine interaction systems, this study proposes a haptic bilateral control integrating synchronous motion control and impedance control. Based on this structure, the environmental load will be transferred to users when the slave side contacts with the environment. However, with the combination of motors and mechanical linkages, disturbance in systems influences users’ feelings and deteriorates the quality of haptic transmission. Therefore, distinguishing disturbance from human-machine systems and taking compensation are essential technologies needed to be considered. In this paper, a flexible module integrated by magnetic coupling and position encoders is proposed to calculate the haptic torque feedback to users and to define disturbances when combining with torque observer. Meanwhile, the disturbance compensation method is utilized to ensure haptic feedback is more consistent with environmental load, allowing tactile sensation to become more real and clear. By utilizing a real system and virtual platform to form a virtual reality system, the feasibility and effectiveness of the proposed method are verified by experimental results. Moreover, with the implementation of a virtual reality haptic feedback vehicle steering system, this paper also demonstrates the applicability of the proposed control structure.

    摘要 I 致謝 XV 目錄 XVI 表目錄 XIX 圖目錄 XIX 符號表 XXII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 雙向控制 2 1.2.2 外擾補償於雙向控制系統 3 1.2.3 撓性機構 4 1.3 研究目的 6 1.4 本文架構 7 第二章 雙向控制架構 8 2.1 扭力觀測器 8 2.2 阻抗控制 12 2.3 雙向控制架構 13 第三章 外擾補償控制架構及控制器設計 18 3.1 系統參數鑑別 18 3.2 磁性聯軸器 18 3.3 外擾補償控制架構 20 3.4 控制器設計 24 3.5 觀測器設計 26 第四章 實驗結果與分析 27 4.1 實驗架構 27 4.1.1 馬達動力模組 28 4.1.2 控制及訊號擷取系統 30 4.1.3 位置編碼器 31 4.1.4 磁性聯軸器 32 4.1.5 車輛動態模擬軟體 33 4.2 實驗結果 34 4.2.1 磁性聯軸器剛度估側 34 4.2.2 外擾補償雙向控制架構驗證 36 4.2.3 具觸覺回饋虛實整合轉向駕駛功能驗證 41 第五章 結論與未來建議 47 5.1 結論 47 5.2 未來建議 47 參考文獻 49

    [1] “Mobile World Congress - Tactile Internet with Human in the Loop,” https://www.youtube.com/watch?v=oPs0NUT0jyI, July 15, 2020.
    [2] O. Heidari and A. Perez-Gracia, “Virtual Reality Synthesis of Robotic Systems for Human Upper-Limb and Hand Tasks,” Conference of IEEE Virtual Reality and 3D User Interfaces (VR), pp. 966-967, 2019.
    [3] H. Goh, S. Kim, S. G. Kang and D. Y. Lee, “Kinematic Requirements of a Haptic Interface for Simulation of Endonasal Endoscopic Skull Base Surgery,” International Conference on Control, Automation and Systems, pp. 39-44, 2018.
    [4] “Robot Arm Platform for VR, Rehabilitation, and More,” https://www.youtube.com/watch?v=9H32TecFhY8, July 15, 2020.
    [5] S. Katsura, Y. Matsumoto, and K. Ohnishi, “Realization of "Law of Action and Reaction" by Multilateral Control,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 1196-1205, 2005.
    [6] S. Katsura, and K. Ohnishi, “A Realization of Haptic Training System by Multilateral Control,” IEEE Transactions on Industrial Electronics, vol. 53, pp. 1935-1942, 2006.
    [7] N. Motoi, R. Kubo, T. Shimono, and K. Ohnishi, “Bilateral Control with Different Inertia Based on Modal Decomposition,” IEEE International Workshop on Advanced Motion Control, pp. 697-702, 2010.
    [8] S. Hangai, K. Oda, T. Nozaki, and K. Ohnishi, “Fiber Suspended Micro Force Transmission System using Scaling Bilateral Control”, Conference of IEEE Industrial Electronics Society, pp. 4575-4580, 2018.
    [9] S. Fukushima, H. Sekiguchi, and K. Ohnishi, “Online Compensation of Gravity and Friction for Haptics with Incremental Position Sensors,” International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1-6, 2017.
    [10] D. Cheon, C. Lee, and S. Oh, “Description of Steering Feel in Steer-by-Wire System using Series Elastic Actuator,” Conference of IEEE Vehicle Power and Propulsion, pp. 1-4, 2019.
    [11] C. Lee, and S. Oh, “Development, Analysis, and Control of Series Elastic Actuator - Driven Robot Leg,” Frontiers in Neurorobotics, vol. 13, pp. 17, 2019.
    [12] P. M. Tlali, R. Wang and S. Gerber, "Magnetic Gear Technologies: A Review," 2014 International Conference on Electrical Machines (ICEM), pp. 544-550, 2014.
    [13] R.G. Montague, “Control of Drive Trains Incorporating Magnetic Gears,” Ph.D. Thesis, Department of Electronic and Electrical Engineering, The University of Sheffield, 2011.
    [14] G. Ellis, Observers in Control Systems: A Practical Guide, Academic press, 2002.
    [15] 許家桾、陳俊霖, 「應用加速規於馬達控制系統之扭矩外擾估測」馬達電子報第762期,馬達科技研究中心,2017。
    [16] Y. Matsumoto, S. Katsura, and K. Ohnishi, “An Analysis and Design of Bilateral Control Based on Disturbance Observer,” Conference of IEEE Industrial Technology, vol. 2, pp. 802-807, 2003.
    [17] 薛博文,「狀態及外擾估測於動力輔助控制系統之設計與應用」,博士論文,國立成功大學機械工程研究所,2013。
    [18] 吳俊儒,「抑制永磁同步馬達頓轉扭矩之位置依據型重複扭矩觀測器設計」,碩士論文,國立成功大學機械工程研究所,2018。
    [19] 胡家勝,「阻抗控制於力覺回饋控制應用之設計與實現」,碩士論文,國立成功大學機械工程研究所,2003。
    [20] 王科霖,「力感阻抗控制應用於電子踏板及車輛防撞策略」,碩士論文,國立成功大學機械工程研究所,2017。
    [21] 李松育,「應用觸覺回饋多向控制於虛擬實境之實現方法」,碩士論文,國立成功大學機械工程研究所,2019。
    [22] MINEX磁性聯軸器,https://www.aurotek.com.tw/tw, July 15, 2020.
    [23] S. Butterworth, "On The Theory of Filter Amplifiers," Wireless Engineer, vol. 7, pp. 536-541, 1930.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE