簡易檢索 / 詳目顯示

研究生: 蘇鈺鈞
Su, Yu-Chun
論文名稱: 波浪獵能器之機電特性量測與水動力學參數計算
Measurement of electromechanical characteristics and numerical calculation of hydrodynamic parameters for wave energy harvesters
指導教授: 楊天祥
Yang, Tian-Shiang
陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 168
中文關鍵詞: 再生能源波浪能波浪獵能器阻抗匹配數值計算
外文關鍵詞: renewable energy, wave energy, wave energy converters, impedance matching, numerical calculation
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著傳統能源匱乏及其造成之汙染嚴重,世界各國對於開發再生能源的態度日益積極,其中波浪能具有高能量密度等特性及台灣地理和氣候因素等條件使波浪能在我國相當具有發展價值。而本實驗室近年來也致力於波浪獵能器,目前已有數學、數值模型與實際建立實驗原型等相關研究,其中實驗原型為以振盪浮體形式為基礎建立的波浪獵能器,最終實驗結果表明此裝置具有許多可改善空間。本研究主要目的為在實際變更原型設計與部署前,透過建立獵能器浮體運動方程式以機電系統之阻尼與波浪系統之附加質量與輻射阻尼的角度探討與優化獵能器。
    首先對獵能器建立了機電測試平台,以最大傳輸功率定理對發電機與外部負載電路進行阻抗匹配得知在負載電路在300 Ω 時發電機具有最大能量輸出,同時優化儲能電路使其獲得的能量達到原本的1.13倍,再透過遲滯阻尼將獲得能量轉換成阻尼後得知阻尼與浮體運動頻率關係式且其與浮體運動振幅無關。而儲能電路隨著電容值上升獲得最佳能量輸入的所需運動週期數上升及浮體運動頻率增加時最佳儲能電容值下降。數值計算部分則透過數值水槽與獵能器浮體的線性模型將入射波浪與浮體的交互作用分解成散射效應與輻射效應兩者疊加並對其分別建立模型,並透過線性波理論與造波器理論驗證其可信度和散射模型與文獻探討在水槽中反射與再反射波影響。最後透過獵能器浮體運動系統的方程式後將實驗與數值計算結果整合獲得浮體運動行為。再來透過浮體運動計算附加質量與輻射阻尼,得知隨著Froude數上升而附加質量與輻射阻尼會下降,且附加質量與獵能器機構質量數量級相同。透過阻尼比發現發電機規模與波浪獵能器規模不匹配,再來使用能量比率分析能量耗散與轉換的平衡。最後透過上述論點,可知此現有獵能器原型未來可調整發電機規模、浮體幾何、機構質量與匹配入射波共振頻率來產生共振等方向來優化獵能器。

    The world demands increasingly more use of renewable energy as the traditional energy sources cause environmental pollution and are becoming more depleted. To fulfill such demand, wave energy is a good alternative for Taiwan because of its high energy density and the favorable geographic and climate conditions herein. Thus our research group has devoted to the development and optimization of a wave energy converter (WEC) of the oscillating body (OB) type. But to optimize our WEC prototype, and to expedite the design process of real-world WEC system as well, it proves useful to understand the electromechanical characteristics of the electric components of a WEC and the hydrodynamic forces exerted on the buoy of the WEC by incoming water waves. Hence in this work we present a methodology for understanding the aforementioned important factors in WEC system design. Specifically, the effective mechanical damping of the electric component of a WEC is determined by exciting the WEC with periodic forcing of various amplitudes and frequencies. Meanwhile, the hydrodynamic forces acting upon the buoy of a certain WEC design by incoming water waves of various frequencies are computed numerically, and then are used to determine the added mass and radiation damping effects on the buoy motion. With the two sets of results at hand, the WEC system dynamics then can be analyzed and optimized.
    In particular, our experimental results on the electromechanical characteristics of the WEC system indicate that the power output can be maximized by impedance matching of the electric components. Meanwhile, the effective damping of the electric components appears to be rather insensitive to the buoy motion amplitude. In the numerical calculation of the hydrodynamic forces, first we construct a linear mathematical model of the numerical water tank (NWT) with the presence of a WEC buoy, and decompose the interaction between the incident waves and the buoy into the superposition of scattering and radiation effects. Next, the motion of the buoy is calculated by solving the equation of motion in which the experimental and numerical results are integrated. And the results indicate that the WEC system dynamic can be optimized by adjusting the size of the generator, the geometry of the buoy, the mass of the mechanism, and by matching the natural frequencies (or impedances) of the various components in a WEC.

    摘要 i 誌謝 xx 目錄 xxi 表目錄 xxiv 圖目錄 xxv 符號說明 xxx Chapter 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目標 3 1.3. 研究架構 5 1.4. 本文架構 6 Chapter 2. 文獻回顧 9 2.1. 獵能器種類與技術回顧 9 2.2. 實驗室先前研究 14 2.3. 機電結構文獻 19 2.4. 數值計算文獻 20 2.5. 本文使用文獻整理 21 Chapter 3. 獵能器機電測試平台設計與建立 23 3.1. 拖曳水槽及已建立之獵能器硬體介紹 23 3.2. 測試平台設計 28 3.3. 驅動馬達選用 32 Chapter 4. 浮體水動力學計算模型 35 4.1. 數值計算模型建立與網格設計 35 4.2. 統御方程式與邊界條件 38 4.3. 無因次化 42 4.4. 浮體運動線性分解分析 46 Chapter 5. 測試平台實驗結果 48 5.1. 馬達與浮體運動關係 48 5.1.1. 馬達與控制參數關係 48 5.1.2. 建立位移量測實驗 52 5.1.3. 控制參數與浮體運動關係 55 5.2. 儲能電路與電機阻抗匹配及電路優化 60 5.2.1. 儲能電路與電機阻抗匹配 60 5.2.2. 以阻抗匹配優化儲能電路 67 5.3. 浮體運動參數與機電阻尼分析 73 5.3.1. 機電系統最大阻尼值 73 5.3.2. 電容儲能電路之機電阻尼 79 5.4. 本章小結 88 Chapter 6. 數值計算結果 89 6.1. 網格獨立性與時間步階獨立性測試 89 6.2. 數值水槽模型理論驗證 92 6.3. 散射運動壓力分析 95 Chapter 7. 獵能器浮體運動預測分析 101 7.1. 浮體系統運動方程式建立 101 7.2. 預測結果與分析 106 7.3. 輻射阻尼與附加質量分析 116 7.4. 阻尼比與能量比率分析 119 7.5. 本章小結 122 Chapter 8. 結論與未來工作 123 8.1. 結論 123 8.2. 本文貢獻 125 8.3. 未來工作與展望 126 參考文獻 128

    [1] “World Population Prospects - Population Division - United Nations.” Accessed: Jan. 28, 2024. [Online]. Available: https://population.un.org/wpp/Graphs/DemographicProfiles/Line/900
    [2] “Carbon neutrality by 2050: the world’s most urgent mission | United Nations Secretary-General.” Accessed: Jan. 28, 2024. [Online]. Available: https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world%E2%80%99s-most-urgent-mission
    [3] “台灣能源政策如何順利執行?.” Accessed: Jan. 28, 2024. [Online]. Available: https://www.ctimes.com.tw/DispArt/tw/%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90/%E9%9B%A2%E5%B2%B8%E9%A2%A8%E5%8A%9B/%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB/1712151107QJ.shtml
    [4] A. Muetze, J. G. Vining, “Ocean wave energy conversion - A survey,” in Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), vol. 3, pp. 1410–1417, 2006.
    [5] A. Clément, P. McCullen, A. Falcão, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M. T Pontes, P. Schild, B. O. Sjöström, H. C. Sørensen, T. Thorpe, “Wave energy in Europe: current status and perspectives,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 405–431, 2002.
    [6] B. Drew, A. R. Plummer, M. N. Sahinkaya, “A review of wave energy converter technology,” in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 223, pp. 887–902, 2009.
    [7] “J. Lehmkoster, T. Schroder, D. Ladischensky, Marine minerals and energy. Tech. Rep. 2010.” Accessed: Jul. 01, 2024. [Online]. Available: https://worldoceanreview.com/wp-content/downloads/wor1/WOR1_en_chapter_7.pdf
    [8] P. H. Chen, T. S. Yang, “Performance analysis of a water tank with oscillating walls for wave energy harvesting,” J Eng Math, vol. 111, pp. 165–189, 2018.
    [9] C.-Y. Liu, “Prototype System Development and Experimental Testing of Water-Wave Energy Harvester,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2019.
    [10] K.-W. Keat, “Numerical Analysis of the Wave-Energy Harvesting Performance of a Water Tank with an Oscillating Paddle,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2020.
    [11] Y.-C. Wang, “Design, Realization and Testing of a Water-Wave Energy Harvester,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2021.
    [12] Z.-C. Wang, “Effects of the mechanical properties of water-wave energy harvester on its energy conversion efficiency: A numerical study,” Master thesis, Department of Mechanical Engineering, National Cheng Kung University, 2022.
    [13] P. Sun, Q. Li, H. He, H. Chen, J. Zhang, H. Li, D. Liu, “Design and optimization investigation on hydraulic transmission and energy storage system for a floating-array-buoys wave energy converter,” Energy Convers Manag, vol. 235, p. 113998, 2021.
    [14] C. A. Desoer, E. S. Kuh, “Basic circuit theory,” in McGraw-Hill, New York City, New York, U.S., pp. 876, 1969.
    [15] R. E. D. Bishop, “The Treatment of Damping Forces in Vibration Theory,” The Journal of the Royal Aeronautical Society, vol. 59, pp. 738–742, 1955.
    [16] C. M. Chiang, M. Stiassnie, D. K.-P. Yue, Theory and Applications of Ocean Surface Waves. in Advanced Series on Ocean Engineering. World Scientific, 2005.
    [17] A. F. de O. Falcão, “Wave energy utilization: A review of the technologies,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 899–918, 2010.
    [18] S. H. Salter, “Wave power,” Nature, vol. 249, pp. 720–724, 1974.
    [19] T. W. Thorpe, “A Brief Review of Wave Energy A report produced for The UK Department of Trade and Industry,” UK Department of Trade and Industry, Rep , pp. 187, 1999.
    [20] D. Clemente, P. Rosa-Santos, F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renewable and Sustainable Energy Reviews, vol. 135, p. 110162, 2021.
    [21] T. V. Heath, “A review of oscillating water columns,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370, pp. 235–245, 2012.
    [22] B. Wu, M. Li, R. Wu, T. Chen, Y. Zhang, Y. Ye, “BBDB wave energy conversion technology and perspective in China,” Ocean Engineering, vol. 169, pp. 281–291, 2018.
    [23] J. L. Lye, D. T. Brown, F. Johnson, “An Investigation Into the Non-Linear Effects Resulting From Air Cushions in the Orecon Oscillating Water Column (OWC) Device,” in Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B, pp. 779–789, 2009.
    [24] B. Czech, P. Bauer, “Wave energy converter concepts : Design challenges and classification,” IEEE Industrial Electronics Magazine, vol. 6, pp. 4–16, 2012.
    [25] “Ocean Power Technologies | Homepage.” Accessed: Jan. 28, 2024. [Online]. Available: https://oceanpowertechnologies.com/
    [26] M. Fadaeenejad, R. Shamsipour, S. D. Rokni, C. Gomes, “New approaches in harnessing wave energy: With special attention to small islands,” Renewable and Sustainable Energy Reviews, vol. 29. pp. 345–354, 2014.
    [27] C. Retzler, “Measurements of the slow drift dynamics of a model Pelamis wave energy converter,” Renew Energy, vol. 31, pp. 257–269, 2006.
    [28] B. Guo, T. Wang, S. Jin, S. Duan, K. Yang, Y. Zhao, “A Review of Point Absorber Wave Energy Converters,” Journal of Marine Science and Engineering, vol. 10, 2022.
    [29] R. Waters, M. Stålberg, O. Danielsson, O. Svensson, S. Gustafsson, E. Strömstedt, M. Eriksson, J. Sundberg, “Experimental results from sea trials of an offshore wave energy system,” Appl Phys Lett, vol. 90, pp. 2, 2007.
    [30] J. P. Kofoed, P. Frigaard, E. Friis-Madsen, H. C. Sørensen, “Prototype testing of the wave energy converter wave dragon,” Renew Energy, vol. 31, pp. 181–189, 2006.
    [31] D. Vicinanza, L. Margheritini, J. P. Kofoed, M. Buccino, “The SSG wave energy converter: Performance, status and recent developments,” Energies (Basel), vol. 5, pp. 193–226, 2012.
    [32] Y. Zhang, Y. Zhao, W. Sun, J. Li, “Ocean wave energy converters: Technical principle, device realization, and performance evaluation,” Renewable and Sustainable Energy Reviews, vol. 141, pp. 171764, 2021.
    [33] “CORDIS | European Commission.” Accessed: Jan. 28, 2024. [Online]. Available: https://cordis.europa.eu/documents/documentlibrary/66628981EN6.pdf.%20Accessed%2022%20Apr%202015
    [34] S. P. Thompson, “Dynamo-Electricity Machinery: A Manual for Students of Electrotechnics,” in E. & F.N. Spon, London, U.K., pp. 335-339, 1886
    [35] P. Knauer, “Automatic Impedance Matching in DC Circuits,” IEEE Trans Aerosp Electron Syst, vol. AES-2, pp. 38–42, 1966.
    [36] C. J. J. Labuschagne, M. J. Kamper, “Wind Generator Impedance Matching in Small-Scale Passive Wind Energy Systems,” IEEE Access, vol. 9, pp. 22558–22568, 2021.
    [37] R. T. Moyo, P. Y. Tabakov, S. Moyo, “The Efficacy of The Maximum Power Transfer Theorem in Improving The Efficiency of Photovoltaic Modules: A Review,” in Southern African Solar Energy Conference, pp. 25-27, 2019.
    [38] K. Lee, T. Ishihara, “A dynamic reconfiguration technique for PV and capacitor arrays to improve the efficiency in energy harvesting embedded systems,” in SMARTGREENS 2012 - Proceedings of the 1st International Conference on Smart Grids and Green IT Systems, pp. 175–182, 2012.
    [39] D. Carli, D. Brunelli, D. Bertozzi, L. Benini, “A high-efficiency wind-flow energy harvester using micro turbine,” in SPEEDAM 2010, pp. 778–783, 2010.
    [40] Y. Wu, W. Liu, Y. Zhu, “Design of a wind energy harvesting wireless sensor node,” in 2013 IEEE Third International Conference on Information Science and Technology (ICIST), pp. 1494–1497, 2013.
    [41] J. Wang, Y. Deng, W. Sun, X. Zheng, Z. Cui, “Maximum power point tracking method based on impedance matching for a micro hydropower generator,” Appl Energy, vol. 340, p. 121003, 2023.
    [42] M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, O. O. Reshetova, “Efficiency of hysteretic damper in oscillating systems,” Math Model Nat Phenom, vol. 15, p. 43, 2020.
    [43] W. J. Duncan, H. M. Lyon, “Calculated flexural torsional flutter characteristics of some typical cantilever wings,” Aeronautical Research Committee, Rep, 1937.
    [44] R. Scanlan, R. Rosenbaum, “Introduction to the study of aircraft vibration and flutter,” in Macmillan, New York, pp.67-97 1951.
    [45] M. D. Haskind, “The Exciting Forces and Wetting of Ships in Waves,” David Taylor Model Basin Washington, D.C., Rep, pp. 65-79 1957.
    [46] J. N. Newman, “The Exciting Forces on Fixed Bodies in Waves,” Journal of Ship Research, vol. 6, pp. 10–17, 1962.
    [47] J. Miles, F. Gilbert, “Scattering of gravity waves by a circular dock,” J Fluid Mech, vol. 34, pp. 783–793, 1968.
    [48] C. J. R. Garrett, “Wave forces on a circular dock,” J Fluid Mech, vol. 46, pp. 129–139, 1971.
    [49] J. L. Black, C. C. Mei, M. C. G. Bray, “Radiation and scattering of water waves by rigid bodies,” J Fluid Mech, vol. 46, pp. 151–164, 1971.
    [50] D. D. Bhatta, M. Rahman, “On scattering and radiation problem for a cylinder in water of finite depth,” Int J Eng Sci, vol. 41, pp. 931–967, 2003.
    [51] M. Eriksson, J. Isberg, M. Leijon, “Hydrodynamic modelling of a direct drive wave energy converter,” Int J Eng Sci, vol. 43, pp. 1377–1387, 2005.
    [52] X. Garnaud, “Wave Energy Extraction from buoys,” Master thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2009.
    [53] H. Kagemotot, D. K. P. Yue, “Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method,” J. Fluid Mech, vol. 166, pp. 189–209, 1986.
    [54] I. G. Currie, “Fundamental mechanics of fluids,” in Taylor & Francis, Florida, U.S., pp. 162-163, 2013.
    [55] S. H. Schot, “Eighty Years of Sommerfeld’s Radiation Condition,” Historia Mathematica, vol. 19, pp. 385–401, 1992.
    [56] “NCKU TOWING TANK - Home.” Accessed: Jun. 26, 2024. [Online]. Available: https://ncku-towing-tank.weebly.com/
    [57] J. Billingham, A. C. King, “Wave Motion,” in Cambridge University Press, Cambridge, U.K., pp. 87-91, 2001.
    [58] “無刷馬達廠商專注品質與創新的領導者 - 愛德利.” Accessed: Jun. 26, 2024. [Online]. Available: https://www.adlee.com/zh-tw/a2/%E8%B3%87%E6%96%99%E4%B8%8B%E8%BC%89.html
    [59] “myRIO-1900 - NI.” Accessed: Jun. 26, 2024. [Online]. Available: https://www.ni.com/
    [60] “LTF12IC2LDQ | LTF Series Long-Range Time-of-Flight Laser Sensor.” Accessed: Jan. 28, 2024. [Online]. Available: https://www.bannerengineering.com/tw/zh/products/part.94849.html

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE