| 研究生: |
李家瑋 Lee, Chia-Wei |
|---|---|
| 論文名稱: |
γ-Fe2O3奈米粒子的表面修飾及其生化上的應用 Surface modification of γ-Fe2O3 nanoparticles and its bio-application |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 生化應用 、表面修飾 、三氧化二鐵奈米粒子 |
| 外文關鍵詞: | bio-application, surface modification, γ-Fe2O3 nanoparticle |
| 相關次數: | 點閱:81 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一些具有磁性的金屬氧化物奈米粒子,如三氧化二鐵及四氧化三鐵,已經被廣泛的研究並發展在感測、核磁共振造影、藥物傳遞以及各種化學及生物物質的分離…等。目前有很多的研究正著手於用各種大分子來修飾磁性粒子的表面,如DNA或生物巨分子。
利用熱分解的合成方法,我們已經成功地合成分散的γ-Fe2O3奈米粒子,粒徑分佈大約在8.4±1.4 nm。其表面修飾的是長碳鏈的保護劑,我們可以有效的將其表面修飾上銨鹽,並且可以分散於水溶液中。
氧化鐵粒子經過銨鹽修飾之後,我們利用其表面性質,可以將一個雙官能基的交連結試劑修飾到氧化鐵粒子的表面,為此交連結試劑分子的一端,可以與-NH2基形成amide鍵;而另一端將與硫醇基形成-C-S-鍵。
在經過此分子的修飾之後,磁性的氧化鐵粒子可以與硫
醇化的寡聚核苷酸產生連結。最後,可得到磁性粒子與寡聚核苷酸的複合物。
由於去氧核糖核酸具有特殊的專性,所以修飾上寡聚核苷酸的磁性奈米粒子可以用來做很多生化上的應用。
利用三股序列的雜交反應,我們可以成功地將個別修飾上寡聚核苷酸的金與氧化鐵奈米粒子形成複合物。經由雜交所形成的複合物(Au/Fe2O3),在加熱至70℃的溫度下,會破壞氫鍵,使複合物(Au/Fe2O3)分開,而回溶於水溶液中。這也提供了證據證明接在氧化鐵磁性粒子上的寡聚核苷酸仍然具有雜交的能力,而可利用於生化上面的應用。
Magnetically active nanoparticles, such as Fe2O3 and Fe3O4, have been extensively investigated because of their application in sensing, imaging, delivery and separation of various chemical and biological entities. Considerable efforts have been devoted to modify the surfaces of magnetic particles using macromolecules, such as DNA and polymers. Following the thermodecomposition synthetic route, we have successfully prepared well dispersedγ-Fe2O3 nanoparticles. The fabricated Fe2O3 nanoparticles with the average size of 8.4 ± 1.4 nm can be effectively transferred into aqueous medium using an ammonium salt and can be dispersed in aqueous solution.
Based on the properties of the particle surfaces, the magnetic particles were modified with a bifunctional linker, where one terminal would react with amine group to form an amide bond while the other side would form a -C–S- bond. After the modification of the linker, magnetic nanoparticles can immediately catch thiol modified oligonucleotides through the formation of –C-S- bond. Once, the magnetic particles were conjugated with oligonucleotides. They were investigated by both electrophoresis and fluorescence measurements.
Since DNA has highly specific base-pairing nature, the developed magnetic-oligonucleotide conjugates could be used in a variety of biological applications. Using a three-strand hybridization system, we were able to conjugate oligonucleotides modified Fe2O3 and Au nanoparticles. The resulting hybridization conjugates (Fe2O3/Au) could be redispersed after heating to 70℃ through dehybridization process.
1. 莊萬發, “超微粒子理論應用”, 復漢出版社, 1994
2. G. A. Ozin, Adv. Mater., 1992, 4, 612.
3. H. J. Fendler, Chem. Rev., 1989, 89, 1861.
4. G. Schimid, “Clusters and Colloids : From Theory to Applications”, VCH, 1994
5. 黃德歡,”改變世界的奈米技術”,瀛舟出版社,2002 年,台北
6. T. Linnert, P. Mulvaney and A. Henglein, J. Phys. Chem., 1993, 97, 679.
7. U. Kreibig and C.V.Z. Fragstein, Phys., 1969, 224, 307.
8. A. P. Alivisatos, Science, 1996 , 271, 933.
9. M. A. El-sayed and Z. L. Wang, J. Phys. Chem. B, 1998, 102, 6145.
10. (a) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir, 2000, 16, 8802.; (b) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir, 2000, 16, 8807.
11. N. Ichinose, Y. Ozaki and S. Kashu, “Superfine Particle Technology”, Springer-Verlag, 1988, 201-203.
12. M. A. El-sayed and Z. L. Wang, J. Phys. Chem. B, 1998, 102, 6145.
13. (a) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir, 2000, 16, 8802. ; (b) I. Lisiecki, H. S. Kongehl, K. Weiss, J. Urban and M. P. Pileni, Langmuir, 2000, 16, 8807.
14. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smally, Nature, 318, 1985, 162
15. A. M. Morales and C. M. Liber, Science, 279, 1998, 208
16. T. Guo, P. Nikolaev, A. Thress, D. T. Colbert and R. E. Smally, Chem. Phys. Lett. , 243, 1995, 49
17. A. Fojik, A. Henglein and B. Bunsenges, Phys. Chem., 97, 1993, 252
18. J. Neddersen, G. Chumanov and T. M. Cotton, Appl. Spectrosc, 47, 1993, 1959
19. J. S. Jeon and C. S. Yeh, J. Chin. Chem. Soc., 45, 1998, 721
20. (a) Y. H. Yeh, M. S. Yeh, Y. P. Lee and C. S. Yeh, Chem. Lett., 1998, 1183;(b) M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh and C. S. Yeh, J. Phys. Chem. B, 103, 1999, 6851
21. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow and H. Sawabe, J. Phys. Chem. B, 104, 2000, 9111
22. Y. H. Chen and C. S. Yeh, Chem. Commun., 2001, 371
23. Y. H. Chen, Y. H. Tseng and C. S. Yeh, J. Mater. Chem., 14, 2002, 1419
24. S. H. Tsai, Y. H. Liu, P. L. Wu and C. S. Yeh, J. Mater. Chem., 13, 2003, 978
25. 莊萬發編撰,”超微粒子理論應用”,復漢出版社,1994
26. A. V, Kabanov, S. N. Namethkin, A. V. Levashov and K. Martinek, Biol. Memb., 2, 1985, 985
27. H. M. Yamaki, K. Kusakabe and S. Morooka, J. Memb. Sci., 85, 1993,167
28. 蘇品書編撰,”超微粒子材料技術”,復漢出版社1989
29. K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan Anal. Chem. 1995, 67, 735
30. K. Esumi, M. Wakabayashi and K. Torigoe, Colloids Surf. A. 1996, 109, 55
31. A. Henhlein and D. Meisei, Langmuir, 1998, 14, 7392
32. T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na, J. Am. Chem. Soc. 2001, 123, 12798
33. M. T. Reetz and W. Helbig, J. Am. Chem. Soc.,1994, 116, 7401
34. Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1994, 101, 6661
35. C. Pascal, J. L. Pascal, F. Favier, M. L. E. Moubtassim and C. Payen, Chem. Mater. 1999, 11, 141
36. J. H. Robert,“Introduction to Modern Colloid Science”1993.
37. H. R. Kruyt, “Colloid Science” , Elsevier Science Publishing Company INC , 1952.
38. J. G. Robert, R. Robert and Stromberg “Surface and Colloid Science Vol.11” , published by Plenum Press , New York and London.
39. G. Schimid, “Clusters and Colloids” : From Theory to Application , VCH:New York , 1994.
40. J. C. Weaver and Y. A. Chizmadzhev, Bioelectrochemistry and Bioenergetics, 1996, 41, 135.
41. S. Link, Z. L. Wang and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 3529.
42. P. Mulvaney, Langmuir, 1996, 12, 788.
43. M. Giersig and P. Mulvaney, Langmuir, 1993, 9, 3408.
44. M. Giersig and P. Mulvaney, J. Phys. Chem., 1993, 97, 6334.
45. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 2003, 107, 668.
46. C. Kittel, “Introduction to Solid State Physics”, 7th edition, Wiley, New York, 1996.
47. U. Kreibig and M. Vollmer, “Optical Properties of Metal Cluster”, Vol. 25, Springer, Berlin, 1995.
48. 葉晨聖, 鄭豐裕, 李琦峰, 化工資訊與商情, 2004, 7, 64
49. S. Sun, H. Zeng, D. B.Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2004,126, 273
50. H. Zeng, J. Li, Z. L. Wang, J. P. Liu and S. Sun, Nano Lett., 2004, 4, 187
51. 廖敏宏, “磁性奈米載體在生物觸媒和生化分離之應用”, 國立成功大學博士論文, 化工, 2002
52. K. J. Klabunde, “Nanoscale materials in chemistry”, Wiley, New York, 2001.
53. T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na, J. Am. Chem. Soc., 2001, 123, 12798
54. A. K. Boal, K. Das, M. Gray and V. M. Rotello, Chem. Mater., 2002, 14, 2628
55. A. B. Bourlinos, A. Bakandritsos, V. Georgakilas and D.Petridis, Chem. Mater., 2002, 14, 3226
56. Y. Wang, X. Teng, J. S. Wang and H. Yang, Nano. Letters, 2003, 3, 789
57.“ 具水溶性及分散性之氧化鐵奈米粒子及其製造方法”, 葉晨聖, 陳毓宏, 李家瑋, 謝達斌, R.O.C. patent 188278
58. 陳毓宏,“ 新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀,金” 國立成功大學博士論文, 化學, 2003
59. C. A. Mirkin, Inorg. Chem., 2000, 39, 2258
60. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Lestsinger and C. A. Mirkin, Science, 1997, 277, 1078.
61. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Lestsinger, J. Am. Chem. Soc., 1998, 120, 1959.