簡易檢索 / 詳目顯示

研究生: 徐郁碩
Hsu, Yu-Shuo
論文名稱: 具精度提升功能之定點二自由度定位誤差量測系統開發
Development of Fixed-Point Two Degree-of-Freedom Positioning Error Measurement System with Precision Improvement Function
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 多自由度誤差量測歪斜光線追跡齊次座標轉換幾何光學誤差耦合雷射源擾動幾何誤差
外文關鍵詞: Multi-degree-of-freedom errors measurement, Geometric optics, Geometric errors, Error crosstalk decoupling, Laser drift errors
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二自由度平面移動平台在3D列印、雷射切割、CNC機械加工與視覺量測等領域都被廣泛使用,為了提升精度,必須量測二自由度平面移動平台的誤差。為了能夠實現多自由度的精密量測,本論文提出一個光學量測系統來量測二自由度平台的二自由度定位誤差。本系統基於幾何光學、歪斜光線追跡與齊次座標轉換,並以上述理論建立數學模型並與光學模擬軟體 ZEMAX 進行比較,此方法可減少數學運算量,提升量測效率。
    除此之外,本論文也提出雷射源四自由度擾動的補償方法與解耦矩陣校正,首先,本論文使用被動式補償雷射源四自由度擾動誤差,並使用均化功能使雷射源擾動的影響降低,再將量測到的雷射源四自由度擾動誤差放入數學模型進行解析,可以在數學上扣掉雷射源擾動誤差的影響,進而提升精度;解耦矩陣校正方面,本論文使用更精細的解耦矩陣校正法,透過市售干涉儀量測出準確數據,並使用最小平方法進行線性擬合後,可進一步校正解耦矩陣,相較於過去修正工程參數的校正方法,此方法可以更精確的擬合出符合真實實驗情況的解耦矩陣,且可以在一定程度上降低安裝誤差所造成的影響。

    A two-degree-of-freedom planar motion platform is widely used in various fields such as 3D printing, laser cutting, and CNC machining. In order to enhance accuracy, it is necessary to measure the errors of the two-degree-of-freedom platform. To achieve multi-degree-of-freedom precision measurement, this paper proposes an optical measurement system for measuring the two-degree-of-freedom positioning errors of the platform. This system is based on geometric optics, skew ray tracing, and homogeneous coordinate transformation. A mathematical model is established based on the above theory and compared with the optical simulation software ZEMAX. This method can reduce the computational workload and improve measurement efficiency.

    In addition, this paper presents a compensation method for the four-degree-of-freedom laser drift and a correction method for the decoupling matrix. Firstly, passive compensation is used to compensate for the four-degree-of-freedom laser drift errors, and the influence of laser drift is reduced by averaging. The measured laser drift errors are then analyzed by the mathematical model, so as to solve the laser drift errors and improve accuracy. As for the decoupling matrix correction, a more precise decoupling matrix correction method is used. Accurate data is obtained through commercial interferometers for linear fitting using the least squares method, enabling further correction of the decoupling matrix. This method can more accurately fit the decoupling matrix to the experimental conditions, and to some extent, mitigate the effects of installation errors.

    摘要 I ABSTRACT II 目錄 VIII 圖目錄 XI 表目錄 XV 符號說明 XVI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 4 第二章 文獻回顧 5 2-1 線性軸的誤差 5 2-2 各誤差量測方式 6 2-2-1 定位誤差 6 2-2-2 直度誤差 9 2-3-3 角度誤差 11 2-3 多自由度量測系統 13 2-4 雷射源擾動補償 16 2-4-1 被動式 16 2-4-2 主動式 18 第三章 基礎理論 22 3-1 幾何光學基本原理 22 3-1-1 光的直線傳播定律 22 3-1-2 反射定律 22 3-1-3 司乃耳定律 23 3-2 齊次座標轉換 24 3-2-1 平移齊次座標轉換矩陣 25 3-2-2 旋轉齊次座標轉換矩陣 26 3-3 歪斜光線追跡法 27 3-3-1 點光源 28 3-3-2 平坦邊界之歪斜光線追跡 29 3-3-3 球面邊界之歪斜光線追跡 35 3-4 雷射源擾動 40 第四章 系統架構及設計原理 45 4-1 系統架構 45 4-2 光學模擬 47 4-3 光路原理 50 4-3-1 雷射源角度擾動量測 50 4-3-2 雷射源平移擾動量測 52 4-3-3 移動端定位量測 53 4-4 量測系統可行性分析 55 第五章 數學模型與誤差解析之方式及原理 64 5-1 數學模型建立 64 5-2 正逆向數學驗證 72 5-2-1 正向數學驗證 72 5-2-2 逆向數學驗證 76 第六章 系統組裝架設與實驗 87 6-1 系統元件介紹 87 6-2 量測系統矩陣校正 92 6-3 精密六軸平台之最小位移量 99 6-4 實驗結果 104 6-4-1 往復移動實驗 105 6-4-2 小行程移動實驗 110 6-4-3 大行程移動實驗 114 第七章 結論與未來規劃 116 7-1 結論 116 7-2 未來規劃 117 7-2-1 環境穩定性 117 7-2-2 硬體提升 119 參考文獻 121

    [1] Y. Morimoto, T. Shinshi, and T. Nakai, “A Two-DOF Controlled Lens Drive Actuator for Off-Axis Laser Beam Cutting,” JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, vol. 6, no. 6, pp. 875-884, 2012.
    [2] W. Wang, Z. F. Chen, Y. W. Zhu et al., “Full-Scale Measurement of Cnc Machine Tools,” INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, vol. 107, no. 5-6, pp. 2291-2301, 2020.
    [3] H. Schwenke, W. Knapp, H. Haitjema et al., “Geometric Error Measurement and Compensation of Machines-an Update,” CIRP ANNALS-MANUFACTURING TECHNOLOGY, vol. 57, no. 2, pp. 660-675, 2008.
    [4] W. Gao, S. W. Kim, H. Bosse et al., “Measurement Technologies for Precision Positioning,” CIRP ANNALS-MANUFACTURING TECHNOLOGY, vol. 64, no. 2, pp. 773-796, 2015.
    [5] P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria et al., “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sensors Journal, vol. 1, no. 4, pp. 322-331, 2001.
    [6] “工具機是什麼?為什麼被稱為「機械之母」?”, https://www.machsync.com.tw/tw/article/%E5%88%87%E5%89%8A%E5%8A%A0%E5%B7%A5/%E5%B7%A5%E5%85%B7%E6%A9%9F%E6%98%AF%E4%BB%80%E9%BA%BC%EF%BC%9F%E7%82%BA%E4%BB%80%E9%BA%BC%E8%A2%AB%E7%A8%B1%E7%82%BA%E3%80%8C%E6%A9%9F%E6%A2%B0%E4%B9%8B%E6%AF%8D%E3%80%8D%EF%BC%9F (accessed June 10th, 2023).
    [7] “鮮為人知的「機械之母」─工具機”, https://www.stockfeel.com.tw/%E9%AE%AE%E7%82%BA%E4%BA%BA%E7%9F%A5%E7%9A%84%E3%80%8C%E6%A9%9F%E6%A2%B0%E4%B9%8B%E6%AF%8D%E3%80%8D%E2%94%80%E5%B7%A5%E5%85%B7%E6%A9%9F/ (accessed June 10th, 2023).
    [8] X. Z. Yu, S. R. Gillmer, S. C. Woody et al., “Development of a Compact, Fiber-Coupled, Six Degree-of-Freedom Measurement System for Precision Linear Stage Metrology,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 87, no. 6, 2016.
    [9] “Xm-60 和 Xm-600 多光束校正儀”, https://www.renishaw.com.tw/tw/xm-60-and-xm-600-multi-axis-calibrator--39258 (accessed June 10th, 2023).
    [10] “Xl-80 雷射系統”, https://www.renishaw.com.tw/tw/xl-80-laser-system--8268 (accessed June 10th, 2023).
    [11] “Xc-80 補償器和感測器”, https://www.renishaw.com.tw/tw/xc-80-compensator-and-sensors--8267 (accessed June 10th, 2023).
    [12] A. Kimura, W. Gao, and L. J. Zeng, “Position and out-of-Straightness Measurement of a Precision Linear Air-Bearing Stage by Using a Two-Degree-of-Freedom Linear Encoder,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 21, no. 5, 2010.
    [13] 王璐钰, 李玉琼, and 蔡榕, "空间激光干涉仪激光抖动噪声抑制研究," 中国光学(中英文), vol. 14, no. 6, pp. 1426-1434doi: 10.37188/CO.2021-0045.
    [14] V. Oliveira, N. I. Polushkin, O. Conde et al., “Laser Surface Patterning Using a Michelson Interferometer and Femtosecond Laser Radiation,” Optics & Laser Technology, vol. 44, no. 7, pp. 2072-2075, 2012.
    [15] I. Coddington, W. C. Swann, L. Nenadovic et al., “Rapid and Precise Absolute Distance Measurements at Long Range,” Nature Photonics, vol. 3, no. 6, pp. 351-356, 2009.
    [16] Y. Ishii, “Wavelength-Tunable Laser-Diode Interferometer,” Optical Review, vol. 6, no. 4, pp. 273-283, 1999.
    [17] “干涉儀系統的運作方式?”, https://www.renishaw.com.tw/tw/how-do-interferometric-systems-work--38612 (accessed June 10th, 2023).
    [18] Z. W. C. Zu Wen Chao, “Homodyne Laser Interferometer,” Japanese Journal of Applied Physics, vol. 36, no. 2B, p. L241, 1997.
    [19] H. Nozato, W. Kokuyama, and A. Ota, “Improvement and Validity of Shock Measurements Using Heterodyne Laser Interferometer,” Measurement, vol. 77, pp. 67-72, 2016.
    [20] C.-P. Chang, S.-C. Chang, Y.-C. Wang et al., "A Novel Analog Interpolation Method for Heterodyne Laser Interferometer," Micromachines, vol. 14, no. 3.
    [21] C. S. Chin and B. K. A. Ngoi, “Self-Compensated Heterodyne Laser Interferometer,” The International Journal of Advanced Manufacturing Technology, vol. 16, no. 3, pp. 217-219, 2000.
    [22] Y. B. Qian, J. K. Li, Q. B. Feng et al., “Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber,” Sensors, vol. 23, no. 8, 2023.
    [23] H. Reese, “The Zeeman Effect,” PHYSIKALISCHE ZEITSCHRIFT, vol. 2, pp. 369-371, 1900.
    [24] “塞曼效應”, https://zh.wikipedia.org/zh-tw/%E5%A1%9E%E6%9B%BC%E6%95%88%E5%BA%94 (accessed June 10th, 2023).
    [25] 冯其波, 光学测量技术与应用, 清华大学出版社, 北京清华大学, 2008.
    [26] T. Mueller, A. Poesch, and E. Reithmeier, “Measurement Uncertainty of Microscopic Laser Triangulation on Technical Surfaces,” MICROSCOPY AND MICROANALYSIS, vol. 21, no. 6, pp. 1443-1454, 2015.
    [27] D. F. Garcia, M. Garcia, F. Obeso et al., “Flatness Measurement System Based on a Nonlinear Optical Triangulation Technique,” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 51, no. 2, pp. 188-195, 2002.
    [28] C. C. Liebe and K. Coste, “Distance Measurement Utilizing Image-Based Triangulation,” IEEE Sensors Journal, vol. 13, no. 1, pp. 234-244, 2013.
    [29] P. Wang, F. C. Meng, Z. L. Zhang et al., “A Bump Height Measurement Method Based on Optical Triangulation,” ACTA PHOTONICA SINICA, vol. 51, no. 5, 2022.
    [30] L. Shen, D. G. Li, and F. Luo, “A Study on Laser Speckle Correlation Method Applied in Triangulation Displacement Measurement,” OPTIK, vol. 124, no. 20, pp. 4544-4548, 2013.
    [31] V. Lombardo, T. Marzulli, C. Pappalettere et al., “A Time-of-Scan Laser Triangulation Technique for Distance Measurements,” OPTICS AND LASERS IN ENGINEERING, vol. 39, no. 2, pp. 247-254, 2003.
    [32] W. X. Chen, Z. B. Ni, X. H. Hu et al., “Research on Pavement Roughness Based on the Laser Triangulation,” PHOTONIC SENSORS, vol. 6, no. 2, pp. 177-180, 2016.
    [33] Z. Zhang, Q. Feng, Z. Gao et al., “A New Laser Displacement Sensor Based on Triangulation for Gauge Real-Time Measurement,” Optics & Laser Technology, vol. 40, no. 2, pp. 252-255, 2008.
    [34] W. Ptaszynski, A. Gessner, P. Frackowiak et al., “Straightness Measurement of Large Machine Guideways,” METALURGIJA, vol. 50, no. 4, pp. 281-284, 2011.
    [35] C. Weichert, H. Bosse, J. Flugge et al., “Implementation of Straightness Measurements at the Nanometer Comparator,” CIRP ANNALS-MANUFACTURING TECHNOLOGY, vol. 65, no. 1, pp. 507-510, 2016.
    [36] P. Xu, R. J. Li, W. K. Zhao et al., “Development and Verification of a High-Precision Laser Measurement System for Straightness and Parallelism Measurement,” METROLOGY AND MEASUREMENT SYSTEMS, vol. 28, no. 3, pp. 479-495, 2021.
    [37] C. H. Liu, Y. R. Jeng, W. Y. Jywe et al., “Automatic Straightness Measurement of a Linear Guide Using a Real-Time Straightness Self-Compensating Scanning Stage,” PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, vol. 223, no. 9, pp. 1171-1179, 2009.
    [38] B. Y. Chen, W. D. Mao, Y. T. Lou et al., “Simultaneous Measurement of the Straightness Error and Its Position Using a Modified Wollaston-Prism-Sensing Homodyne Interferometer,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 31, no. 8, 2020.
    [39] Q. H. Chen, D. J. Lin, J. Wu et al., “Straightness/Coaxiality Measurement System with Transverse Zeeman Dual-Frequency Laser,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 16, no. 10, pp. 2030-2037, 2005.
    [40] B. Chen, E. Zhang, L. Yan et al., “A Laser Interferometer for Measuring Straightness and Its Position Based on Heterodyne Interferometry,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 80, no. 11, p. 115113, 2009.
    [41] J. H. Zhang and L. L. Cai, “Interferometric Straightness Measurement System Using Triangular Prisms,” OPTICAL ENGINEERING, vol. 37, no. 6, pp. 1785-1789, 1998.
    [42] C. F. Kuang, E. Hong, Q. B. Feng et al., “A Novel Method to Enhance the Sensitivity for Two-Degrees-of-Freedom Straightness Measurement,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 18, no. 12, pp. 3795-3800, 2007.
    [43] F. L. You, B. Zhang, and Q. B. Feng, “A Novel Laser Straightness Measurement Method with Beam Bend Compensation,” OPTIK, vol. 122, no. 17, pp. 1530-1534, 2011.
    [44] W. Z. Liu, C. Zhang, F. J. Duan et al., “A Method for Noise Attenuation of Straightness Measurement Based on Laser Collimation,” Measurement, vol. 182, 2021.
    [45] P. R. Yoder, E. R. Schlesinger, and J. L. Chickvary, “Active Annular-Beam Laser Autocollimator System,” Applied Optics, vol. 14, no. 8, pp. 1890-1895, 1975.
    [46] F. J. Schuda, “High‐Precision, Wide‐Range, Dual‐Axis, Angle Monitoring System,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 54, no. 12, pp. 1648-1652, 1983.
    [47] J. Yuan and X. Long, “Ccd-Area-Based Autocollimator for Precision Small-Angle Measurement,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 74, no. 3, pp. 1362-1365, 2003.
    [48] L. Xiaoping, L. Yong, L. Lishuang et al., “Measurement System of Tiny Angle Based on Led,” in Proc.SPIE, vol. 8321, p. 832149, 2011.
    [49] A. V. Kirsanov, T. V. Barmashova, V. V. Zelenogorskii et al., “Computer-Aided Two-Coordinate Autocollimator for Measuring Small Angular Deviations,” Instruments and Experimental Techniques, vol. 52, no. 1, pp. 141-143, 2009.
    [50] W. Gao, Y. Saito, H. Muto et al., “A Three-Axis Autocollimator for Detection of Angular Error Motions of a Precision Stage,” CIRP Annals, vol. 60, no. 1, pp. 515-518, 2011.
    [51] K. Li, C. F. Kuang, and X. Liu, “Small Angular Displacement Measurement Based on an Autocollimator and a Common-Path Compensation Principle,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 84, no. 1, 2013.
    [52] D. Malacara and O. Harris, “Interferometric Measurement of Angles,” Applied Optics, vol. 9, no. 7, pp. 1630-1633, 1970.
    [53] P. Shi and E. Stijns, “Improving the Linearity of the Michelson Interferometric Angular Measurement by a Parameter Compensation Method,” Applied Optics, vol. 32, no. 1, pp. 44-51, 1993.
    [54] M. V. R. K. Murty, “Modification of Michelson Interferometer Using Only One Cube-Corner Prism,” Journal of the Optical Society of America, vol. 50, no. 1, pp. 83-84, 1960.
    [55] M. Ikram and G. Hussain, “Michelson Interferometer for Precision Angle Measurement,” Applied Optics, vol. 38, no. 1, pp. 113-120, 1999.
    [56] P. Shi and E. Stijns, “New Optical Method for Measuring Small-Angle Rotations,” Applied Optics, vol. 27, no. 20, pp. 4342-4344, 1988.
    [57] K. Shi, J. Su, and W. Hou, “Roll Angle Measurement System Based on Differential Plane Mirror Interferometer,” Optics Express, vol. 26, no. 16, pp. 19826-19834, 2018.
    [58] T. Jin, G. Xia, W. Hou et al., “High Resolution and Stability Roll Angle Measurement Method for Precision Linear Displacement Stages,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 88, no. 2, p. 023102, 2017.
    [59] G. Cloud, Optical Methods of Engineering Analysis, Cambridge University Press, Cambridge, 1995.
    [60] C. M. Wu and Y. T. Chuang, “Roll Angular Displacement Measurement System with Microradian Accuracy,” SENSORS AND ACTUATORS A-PHYSICAL, vol. 116, no. 1, pp. 145-149, 2004.
    [61] W. Ren, J. Cui, and J. Tan, “A Novel Enhanced Roll-Angle Measurement System Based on a Transmission Grating Autocollimator,” IEEE Access, vol. 7, pp. 120929-120936, 2019.
    [62] Y. Cai, L. Wang, Y. Liu et al., “Accuracy Improvement of Linear Stages Using on-Machine Geometric Error Measurement System and Error Transformation Model,” Optics Express, vol. 30, no. 5, pp. 7539-7550, 2022.
    [63] Y. Cai, Q. Sang, Z.-F. Lou et al., "Error Analysis and Compensation of a Laser Measurement System for Simultaneously Measuring Five-Degree-of-Freedom Error Motions of Linear Stages," Sensors, vol. 19, no. 18, doi: 10.3390/s19183833.
    [64] Y. Cai, B. Yang, and K.-C. Fan, “Robust Roll Angular Error Measurement System for Precision Machines,” Optics Express, vol. 27, no. 6, pp. 8027-8036, 2019.
    [65] Y. S. Zhai, Z. F. Zhang, Y. L. Su et al., “A High-Precision Roll Angle Measurement Method,” OPTIK, vol. 126, no. 24, pp. 4837-4840, 2015.
    [66] F. Zheng, Q. Feng, B. Zhang et al., “Effect of Detector Installation Error on the Measurement Accuracy of Multi-Degree-of-Freedom Geometric Errors of a Linear Axis,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 31, no. 9, p. 094018, 2020.
    [67] C. C. Bao, J. K. Li, Q. B. Feng et al., “Error-Compensation Model for Simultaneous Measurement of Five Degrees of Freedom Motion Errors of a Rotary Axis,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 29, no. 7, 2018.
    [68] Y. Zhao, B. Zhang, and Q. Feng, “Measurement System and Model for Simultaneously Measuring 6DOF Geometric Errors,” Optics Express, vol. 25, no. 18, pp. 20993-21007, 2017.
    [69] C. X. Cui, Q. B. Feng, and B. Zhang, “Compensation for Straightness Measurement Systematic Errors in Six Degree-of-Freedom Motion Error Simultaneous Measurement System,” Applied Optics, vol. 54, no. 11, pp. 3122-3131, 2015.
    [70] D. Ma, J. K. Li, Q. B. Feng et al., “Simultaneous Measurement Method and Error Analysis of Six Degrees of Freedom Motion Errors of a Rotary Axis Based on Polyhedral Prism,” APPLIED SCIENCES-BASEL, vol. 11, no. 9, 2021.
    [71] J. K. Li, Q. B. Feng, C. C. Bao et al., “Method for Simultaneous Measurement of Five DOF Motion Errors of a Rotary Axis Using a Single-Mode Fiber-Coupled Laser,” Optics Express, vol. 26, no. 3, pp. 2535-2545, 2018.
    [72] S. Gao, B. Zhang, Q. Feng et al., “Errors Crosstalk Analysis and Compensation in the Simultaneous Measuring System for Five-Degree-of-Freedom Geometric Error,” Applied Optics, vol. 54, no. 3, pp. 458-466, 2015.
    [73] Y. Huang, K.-C. Fan, W. Sun et al., “Low Cost, Compact 4-DOF Measurement System with Active Compensation of Beam Angular Drift Error,” Optics Express, vol. 26, no. 13, pp. 17185-17198, 2018.
    [74] L. Liu, Z.-F. Lou, Y.-B. Huang et al., “A Five Degrees-of-Freedom Errors Measurement System for Rotary Axis with Reference Laser for Reference Axis Alignment,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 91, no. 7, p. 075101, 2020.
    [75] P. Z. Jia, B. Zhang, F. J. Zheng et al., “Comprehensive Measurement Model of Geometric Errors for Three Linear Axes of Computer Numerical Control Machine Tools,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 33, no. 1, 2022.
    [76] F. J. Zheng, Q. B. Feng, B. Zhang et al., “A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers,” Sensors, vol. 19, no. 8, 2019.
    [77] P. Z. Jia, B. Zhang, Q. B. Feng et al., “Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of Cnc Machine Tools Using Different Modes,” Sensors, vol. 20, no. 12, 2020.
    [78] C. C. Bao, Q. B. Feng, and J. K. Li, “Simultaneous Measurement Method and Error Analysis of the Six Degrees-of-Freedom Motion Errors of a Rotary Axis,” APPLIED SCIENCES-BASEL, vol. 8, no. 11, 2018.
    [79] C. X. Cui, Q. B. Feng, B. Zhang et al., “System for Simultaneously Measuring 6DOF Geometric Motion Errors Using a Polarization Maintaining Fiber-Coupled Dual-Frequency Laser,” Optics Express, vol. 24, no. 6, pp. 6735-6748, 2016.
    [80] Y. Cai, Z. Lou, S. Ling et al., "Development of a Compact Three-Degree-of-Freedom Laser Measurement System with Self-Wavelength Correction for Displacement Feedback of a Nanopositioning Stage," Applied Sciences, vol. 8, no. 11, doi: 10.3390/app8112209.
    [81] Y. Cai, B. Feng, Q. Sang et al., "Real-Time Correction and Stabilization of Laser Diode Wavelength in Miniature Homodyne Interferometer for Long-Stroke Micro/Nano Positioning Stage Metrology," Sensors, vol. 19, no. 20, doi: 10.3390/s19204587.
    [82] L. M. Chen, K. C. Fan, and H. Zhou, “A Novel Miniature Laser Diode Interferometer for Precision Displacement Measurements,” in Proceedings of the 38th International MATADOR Conference, pp. 491-499, 2022.
    [83] J. Zhang, Z. Lou, K.-C. Fan et al., “Development of a Precision Vertical Planar Stage as a Programmable Planar Artefact,” Measurement, vol. 217, p. 113055, 2023.
    [84] E. Jakeman, C. J. Oliver, E. R. Pike et al., “The Intensity Fluctuation Distribution of Laser Light,” Journal of Physics A: General Physics, vol. 3, no. 6, p. L52, 1970.
    [85] J. A. Armstrong and A. W. Smith, “Intensity Fluctuations in GaAs Laser Emission,” Physical Review, vol. 140, no. 1A, pp. A155-A164, 1965.
    [86] T. Ito, S. Machida, K. Nawata et al., “Intensity Fluctuations in Each Longitudinal Mode of a Multimode AlGaAs Laser,” IEEE Journal of Quantum Electronics, vol. 13, no. 8, pp. 574-579, 1977.
    [87] F. Zheng, F. Long, Y. Zhao et al., “High-Precision Small-Angle Measurement of Laser-Fiber Autocollimation Using Common-Path Polarized Light Difference,” IEEE Sensors Journal, vol. 23, no. 9, pp. 9237-9245, 2023.
    [88] C. Yindi, W. Zhixiang, W. Luhui et al., “Real-Time Wavelength Compensation of Laser Diode Interferometer,” in Proc.SPIE, vol. 12030, p. 120300G, 2021.
    [89] B. Chen, L. Cheng, L. Yan et al., “A Heterodyne Straightness and Displacement Measuring Interferometer with Laser Beam Drift Compensation for Long-Travel Linear Stage Metrology,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 88, no. 3, p. 035114, 2017.
    [90] Y. Zhao, Q. Feng, B. Zhang et al., “Influence of Beam Radii on a Common-Path Compensation Method for Laser Beam Drifts in Laser Collimation Systems,” MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 27, no. 8, p. 084013, 2016.
    [91] S. Liu, S. Tan, Y. Huang et al., “Design of a Compact Four Degree-of-Freedom Active Compensation System to Restrain Laser’s Angular Drift and Parallel Drift,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 90, no. 11, p. 115002, 2019.
    [92] S. Liu, S. Zhang, Y. Huang et al., “The Method for Restraining Laser Drift Based on Controlling Mirror,” Nanomanufacturing and Metrology, vol. 1, no. 1, pp. 58-65, 2018.
    [93] Y.-H. Chang, C.-S. Liu, and C.-C. Cheng, “Design and Characterisation of a Fast Steering Mirror Compensation System Based on Double Porro Prisms by a Screw-Ray Tracing Method,” Sensors, vol. 18, no. 11, 2018.
    [94] Y.-H. Chang, G. Hao, and C.-S. Liu, “Design and Characterisation of a Compact 4-Degree-of-Freedom Fast Steering Mirror System Based on Double Porro Prisms for Laser Beam Stabilization,” Sensors and Actuators A: Physical, vol. 322, p. 112639, 2021.
    [95] C.-S. Liu and C.-H. Tsai, “Design and Characterization of Innovative Optical Prism for Four-Degree-of-Freedom Fast Steering Mirror Active Laser Compensation System,” REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 93, no. 4, p. 045002, 2022.
    [96] 蔡忠佑, “稜鏡成像位姿變化之分析與設計”, 國立成功大學機械工程學系碩博士班, 博士, 台南市, 2007. [Online]. Available: https://hdl.handle.net/11296/c8q838
    [97] 陳俊仁, “使用歪斜光線追蹤法發展光電式多自由度量測系統”, 國立成功大學機械工程學系碩博士班, 博士, 台南市, 2007. [Online]. Available: https://hdl.handle.net/11296/rv586j
    [98] P. D. Lin and C.-H. Lu, “Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing,” Applied Optics, vol. 43, no. 4, pp. 796-807, 2004.
    [99] P. D. Lin and T.-t. Liao, “Skew Ray Tracing and Sensitivity Analysis of Geometrical Optics,” Journal of Manufacturing Science and Engineering, vol. 122, no. 2, pp. 338-349, 1999.
    [100] P. D. Lin, New Computation Methods for Geometrical Optics, Springer, 2014.
    [101] “Iflex-Iris Compact Diode & Dpss Laser Series”, https://www.excelitas.com/product/iflex-iris-compact-diode-dpss-laser-series (accessed June 13th, 2023).
    [102] “Spoton Usb 2.0”, https://www.dumaoptronics.com/spoton-usba (accessed June 13th, 2023).
    [103] “Hxp50-Meca High Precision 6-Axis Hexapod”, https://www.newport.com/p/HXP50-MECA (accessed June 13th, 2023).
    [104] 曾絜妤, “幾何光學長行程線性軸定位誤差量測系統之開發”, 國立成功大學機械工程學系碩博士班, 碩士, 台南市, 2020. [Online]. Available: https://hdl.handle.net/11296/b6377q
    [105] 戴暐哲, “基於幾何光學之線性軸六自由度誤差量測系統開發與驗證”, 國立成功大學機械工程學系碩博士班, 碩士, 台南市, 2021. [Online]. Available: https://hdl.handle.net/11296/s3g8uu
    [106] 羅濟宸, “具雷射源擾動及安裝誤差補償之線性軸六自由度幾何誤差量測系統”, 國立成功大學機械工程學系碩博士班, 碩士, 台南市, 2022. [Online]. Available: https://hdl.handle.net/11296/9xtnd9

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE