| 研究生: |
鄞建章 Yin, Chine-Chand |
|---|---|
| 論文名稱: |
應用熵增最小化於對齊式與交錯式柱狀形散熱器之電子冷卻數值最佳化 Optimization of Electronic Cooling with In-line and Staggered Pin Fin Heat Sink Using Entropy Generation Minimization |
| 指導教授: |
楊玉姿
Yang, Yu-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 鰭片 、散熱器 、紊流 、最佳化 、熵增最小化 、基因演算法 |
| 外文關鍵詞: | pin-fins, heat sinks, turbulent flow, optimization, entropy generation minimization, genetic algorithm |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以數值模擬三維鰭片散熱器之不可壓縮紊流流場與熱傳特性,且工作流體為空氣。文中比較了兩種不同形狀的鰭片散熱器,包括圓形和方形,並討論了兩種鰭片散熱器在對齊式排列與交錯式排列之散熱性能。紊流統御方程式則是以有限體積法為基礎,配合三種根據雷諾平均Naviers-Stokes 近似的 紊流模型來求解本問題。在本文的研究範圍內,可實現化 紊流模型相對於另外兩個紊流模型在整體性能上表現較好。
往後的數值計算都將使用可實現化 紊流模型,其研究參數包含:鰭片高度H、鰭片直徑D和雷諾數Re,其研究探討的範圍為7mm<H<10mm、0.75mm<D<2mm及2000<Re<12600。將模擬結果與文獻上的實驗數據作驗證,其結果相吻合。圓形鰭片散熱器因為形狀相對於方形鰭片散熱器較為流線,所以在壓降方面較方形鰭片散熱器小,但是熱傳效益較不如方形鰭片散熱器。文中也發現交錯式排列對流場的擾動性較佳,故熱傳性能優於對齊式排列的鰭片散熱器。不管是交錯式或對齊式鰭片在熱阻、壓降和熵增都有相同的趨勢。
此外,在經過與實驗值的驗證後,文中利用基因演算法來對鰭片散熱器作最佳化,並以熵增為目標函數,計算其最小值,熵增可由壓降與熱阻計算而得。對於對齊式與交錯式鰭片散熱器,分別對其最佳化,且相對的性能分析將在文中討論。
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume-based finite-difference method by employing three well-known turbulence models based on Reynolds-averaged Navier-Stokes (RANS) approach. Overall performance of realizable turbulence model is much better in comparing with other turbulence models in the studied ranges.
Subsequently, numerical computations are performed with the realizable turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7mm<H<10mm, 0.75mm<D<2mm, 2000<Re<12600, respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins is streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
In addition, after the validation of the numerical results, genetic algorithm (GA) is applied for the optimization of pin-fin heat sinks. Entropy generation due to heat transfer and pressure drop across pin-fins is minimized by using GA. Both in-line and staggered arrangement are studied and their relative performance is compared.
[1]Wirtz R.A. and Colban D.M., “Comparison of the Cooling Performance of Staggered and In-Line Arrays of Electronic Packages”, Transactions of the ASME, Journal of Electronic Packaging, Vol. 118, No. 1, pp. 27-30, 1996.
[2]Sathyamurthy, P., Runstadler, P.W., “Numerical and Experimental Evalution of Planar and Staggerred Heat Sinks”, Inter Society Conference on Thermal Phenomena, Vol. 5, No. 7,pp. 132-139, 1996.
[3]Jonsson H. and Moshfegf B., “Modeling of the Thermal and Hydraulic Performance of Plate fin, Strip Fin, and Pin Fin Heat Sinks – Influence of Flow bypass”, Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp.142-149, 2001.
[4]Jonsson H., and Palm B., “Thermal and Hydraulic Behavior of Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, pp. 47-54, 2000.
[5]Sara O.N., “Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins”, Energy Conversion and Management, Vol. 44, pp. 1787-1803, 2003.
[6]Behnia M.,Copeland, D. and Soodphakdee, D., “A Comparison of Heat Sink Geometries for Laminar Forced Convection:Numerical Simulation of Periodically Developed Flow”, Int. Society Conference on Thermal Phenomena, IEE, pp.310-315, 1998.
[7]Yang J., Soodphakdee D. and Behnia M., “Correlations Based on CFD and Their Applications in Optimization for Staggered and Parallel Plate Fin Heat Sinks”, J. Univ. Sci. Technol. Beijing, Vol. 9, pp. 25–30, 2002.
[8]Leon O., DeMey G., Dick E. and Vierendeels J., “Comparison between the Standard and Staggered Layout for Cooling Fins in Forced Convection Cooling” ASME J. Electron. Packag., Vol. 125, pp. 442–446, 2003.
[9]Lawson A., Thrift A., Thole A., Kohli A., “Heat Transfer from Multiple Row Arrays of Low Aspect Ratio Pin Fins”, Int. J. Heat and Mass Transfer, Vol. 54, pp. 4099-4109, 2011.
[10]Narasimhan S., Majdalani J., “Characterization of Compact Heat Sink Models in Natural Convection”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, pp. 78-86, 2002.
[11]Zhou F., Catton I., “Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections”, Numerical Heat Transfer, Part A: Applications, Vol. 60, pp.107-128, 2011.
[12]Sahiti N., Lemouedda A., Stojkovic D., Durst F., Franz E., “Performance Comparison of Pin Fin In-Duct Flow Arrays with Various Pin Cross-Sections”, Applied Thermal Engineering, Vol. 26, pp. 1176-1192, 2006.
[13]Yang Y.T., Peng H.S., “Numerical Study of Thermal and Hydraulic Performance of Compound Heat Sink”, Numerical Heat Transfer, Part A: Applications, Vol. 55, pp. 432-447, 2009.
[14]Leon O. Optimization of heat sinks by computational flow dynamics techniques, Doctoral Thesis, University of Ghent, 2003.
[15]Sansoucy E., Oosthuizen P.H., Ahmed G.R., “An Experimental Study of the Enhancement of Air-Cooling Limits for Telecom/Datacom Heat Sink Applications Using an Impinging Air Jet”, Journal of Electronic Packaging, Vol. 128, pp.166-171, 2006.
[16]Ledezma G. A. and Bejan A., “Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection,” Journal of Heat Transfer, Vol. 119, pp.700- 708, 1997.
[17]Yu X.L., Feng J.M., Feng Q.K., Wang Q.W., “Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink”, Applied Thermal Engineering, Vol. 25, pp.173-82, 2005.
[18]Zhao Y.H., Chai C.X., Luo Z.M., “Numerical Simulation Study on Heat Transfer Characteristics of Plate-Pin Fin Oil Cooler”, Design & Manufacture of Diesel Engine, Vol. 14, pp.13-15, 2005.(in Chinese)
[19]Abdel-Rehim Z.S., “Optimization and Thermal Performance Assessment of Pin Fin Heat Sinks”, Energy Source, Part A: Utilization, and Environmental Effect, Vol. 31, pp. 51-65, 2008.
[20]Chiang K. T., Chang F.P., “Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink”, Int. Communication in Heat and Mass Transfer, Vol. 33, pp. 836-845, 2006.
[21]Seyf H. R., Layeghi M., “Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert”, J. Heat transfer, Vol. 132, paper no. 071401, 2010.
[22]Nakayama A., Yang J., Zeng M., Wang Q. W., “Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels”, J. Heat transfer, Vol. 132, paper no.051702, 2010.
[23]Jeng TM., “A Porous Model for the Square Pin-Fin Heat Sink Situated in a Rectangular Channel with Laminar Side-Bypass Flow”, Int. J. Heat and Mass Transfer, Vol. 51, pp. 2214-2226, 2008.
[24]Mohsin S., Maqbool A., Khan W. A., “Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms”, IEEE Trans. Compon. Packag. Technol., Vol. 32, No.1, pp. 44-52, 2009.
[25]Khan W. A., Culham J. R., Yovanovich M. M., “Optimization of Pin Fin Heat Sinks Using Entropy Generation Minimization”, IEEE Trans. Compon. Packag. Technol., Vol. 28, No. 2, pp. 247-254, 2005.
[26]Launder B.E., Spalding D.B., “The Numerical Computation of Turbulent Flow,” Computer Method in Applied Mechanics and Engineering, Vol. 3, pp.269-289, 1974.
[27]Yakhot V., Orszag S.A., “Renormalization Group Analysis of Turbulence,” Journal of Scientific Computing, Vol. 1, pp.3-51, 1986.
[28]Shih T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J., “A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation,” Computers Fluids, Vol. 24, pp.227-238, 1995.
[29]Serag-Eldin M. A., Spalding D. B., “Computation of Three-Dimensional Gas Turbine Combustion Chamber,”ASME Journal of Engineering for Power, Vol. 101, pp.327-336, 1979.
[30]Jayatilleke C., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer,” Prog. Heat Mass Transfer, Vol. 1, pp.193-321, 1969.
[31]Kim S.-E., Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient,” Separated and Complex Flow, ASME FED Vol. 217, 1995.
[32]Patankar S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[33]Van Doormaal J. P., Raithby G. D., “Enhancement of the SIMPLE method for Predicting Incompressible Fluid Flow”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[34]Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
[35]De Jong K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No. 76~9381, 1975.
[36]Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
[37]Davis L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
[38]Koza J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
[39]葉怡成, 高等實驗計算法(Advanced Design of Experiments),五南圖書公司, 2009.
[40]周明, 孫樹棟, 遺傳算法原理及應用(Genetic Algorithms: theory and applications), 國防工業出版社, 1999.