| 研究生: |
陳肇英 Chen, Zhao-Ying |
|---|---|
| 論文名稱: |
雷射與電漿混合法製備奈米金屬微粒之研究 The formation of nano-scale metallic particles by laser-plasma hybrid method |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 電漿火炬 、奈米粒子 、雷射 |
| 外文關鍵詞: | laser, nano-particles, plasma torch |
| 相關次數: | 點閱:46 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究目的是以自行發展之雷射與電漿火炬混合法製備奈米金屬微粒,結合電漿火炬之流場特性及金屬微粒的成核成長現象以數值模擬分析及實驗進行研究。
在數值分析方面,考慮噴嘴幾何、電漿火炬的流場特性,應用MHD發電理論、流體力學和氣動力學方程式以及相關數值方法,以計算流體力學分析軟體FLUENT計算在電漿火炬的速度場、壓力場和溫度場等流場特性。在奈米微粒成長理論是使用有限差分法,將奈米微粒成長理論中的數學模型離散預測生成粒子過程中的粒徑變化,其中考慮粒子間碰撞重熔行為的金屬蒸氣冷凝與單體分子濃度的平衡關係式、成核率方程式以及相關的奈米微粒成長尺寸的計算,將電漿火炬之速度分佈與溫度分佈代入到奈米微粒成長理論的計算中以瞭解電漿火炬對於粒子成長機制的影響。在實驗部份則是採用連續式,波長10.6μm的CO2雷射對照射鐵和鎳金屬材料引發金屬蒸氣,以電漿火炬偶合作用而生成奈米金屬微粒,利用電子顯微鏡(F-SEM)和能量散佈儀(EDS)做粒子尺寸與分佈分析以及成分分析。
在研究中可以得到不同氣流條件所產生的電漿流場特性對生成奈米金屬微粒時粒子特性的影響。經理論分析並輔以實驗結果進行比對,以作為日後從事生成奈米粒子相關研究的基礎。
The metallic nano-particles are generated by laser ablation with a plasma torch in this study. At various flow velocities of the plasma generated by an arc torch, the nucleation and solidification phenomena of the metallic particles have been simulated in the numerical analysis and evaluated by the experiments.
The aspects of the numerical analysis include the process parameters of the flow velocity, pressure, and temperature of the plasma. Using the computational fluid dynamics (CFD) software, the compressible flow problem with turbulence effects was solved. With the other approach of the mathematical formulation of the particle nucleation, condensation, and coagulation processes during the particle-flow interactions in flight, the formation of the nano-particle was simulated. In experiment, the temperature of the plasma torch was evaluated by the spectrum analysis, and the particle size and distribution were also observed. The experimental results show a good agreement with the numerical simulation.
[1] Greses J., Hilton P. A., Barlow C. Y., Steen W. M., “Plume attenuation under high power Nd-YAG laser welding”, Proceeding of ICALEO’02, Sec. C, 2002.
[2] Matsunawa A., Ohnawa T., “Beam-plume interaction in laser materials processing”, Transactions of JWRI, Vol. 20, No. 1, pp. 9-15, 1991.
[3] Wang H. X., Chen X., “Three-dimensional modeling of the laser-iduced plasma plume characteristics in laser welding”, Journal of Physics D : Applied Physics, Vol. 36, pp. 628-639, 2003.
[4] Chen X., Wang H. X., “Prediction of the laser-induced plasma characteristics in laser welding : a new modeling approach in cludeing a simplified keyhole model”, Journal of Physics D : Applied Physics, Vol. 36, pp. 1634-1643, 2003.
[5] Rockstroh T., Mazumder J., “Spectroscopic studies of plasma during CW laser materials interaction”, Journal of Applied Physics, Vol. 61, No. 3, pp. 917-923, 1987.
[6] Hari S. N. (Ed.), “Handbook of Nanostructured Materials and Nanotechnology”, Vol. 1 _/4, Academic Press, San Diego, 1999.
[7] Karch J., Birringer R., Gleiter H., ”Ceramics ductile at low temperature”, Nature, Vol. 330, No. 6148, pp. 556-558, Dec10-16, 1987.
[8] Yang X. C., Riehemann W., Dubiel M. and Hofmeister H., “Nanoscaled ceramic powders produced by laser ablation”, Materials Science and Engineering B, Vol. 95, pp. 299-307, 2002.
[9] John F. R., “Industrial application of laser”, New York:Academic Press, 1978.
[10] William M. S., “Laser Material Processing”, Springer, 2001.
[11] Adent M., Beyer E., Herziger G.., and Kunze H., ”Laser-induced vaporization of a metal surface”, Journal of Physics D:Applied Pysics, Vol.25, pp.57-65, 1992.
[12] 張立德, 牟季美, ”奈米材料和奈米結構”, 滄海書局, 2002.
[13] Gleiter H., “Nanocrystalline materials”, Progress in Materials Science, Vol. 33, No. 4, pp. 223-315, 1989.
[14] Hass V., Birringer R., Gleiter H. and Pratsinis S. E., “Simulation of synthesis of palladium nanoparticles in an aerosol flow condenser”, Journal of Aerosol Science, Vol. 29, No. 1, pp. 525-526, 1998.
[15] Koch W., Windt H. and Karfich N., “Modeling and experimental evaluation of an aerosol generator for very high number currents based on a free turbulent jet”, Journal of Aerosol Science, Vol. 24, No. 7, pp. 909-918, 1993.
[16] Brock J. R., Kuhn P. J. and Zehavi D., “Condensation aerosol formation and growth in a laminar coaxial jet: experimental”, Journal of Aerosol Science, Vol. 17, No. 1, pp. 11-22, 1986.
[17] Lesniewski T. K. and Friedlander S. K., “The effect of turbulence on rates of particle formation by homogeneous nucleation”, Aerosol Science and Technology, Vol. 23, pp. 174-182, 1995.
[18] Lesniewski T. K. and Koch W., “Production of rounded Ti- and Al-hydroxide particles in a turbulent jet by coagulation-controlled growth followed by rapid coalescence”, Journal of Aerosol Science, Vol. 29, No. 1-2, pp. 81-98, 1998.
[19] Juang C. B., Hong C., Becker M. F., Keto J. W. and Brock J. R., “Synthesis of nanometer glass particles by pulsed-laser ablation of microspheres”, Applied Physics Letters, Vol. 65, No. 1, pp. 40-42, 1994.
[20] Seol K. S., Camata R. P., and Takeuchi K., “Study on the formation of silicon nanoparticles during laser ablation using a low-pressure differential mobility analyzer”, Journal of Aerosol Science, Vol. 30, Suppl. 1, pp. S467-S468, 1999.
[21] Takehito Y., Shigeru T., Yuka Y., and Katsuhiko ., “Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas”, Applied Physics Letters, Vol. 68, No. 13, pp. 1772-1774, 1996.
[22] EL-Shall M. S., Graiver D. and Pernisz U., “Synthesis and characterization of nanoscale zinc oxide particles: I. Laser vaporization/condensation technique”, Nanostructured Materials, Vol. 6, pp. 297-300, 1995.
[23] 賴耿楊, ”電漿工學的基礎”, 復文書局, 2002.
[24] Nicholson D. R., “Introduction to plasma theory”, Wiley, New York, 1983.
[25] George W. S. and Arthur S., “Engineering magneto hydrodynamics”, McGraw-Hill, New York, 1965.
[26] McKelliget J., Szekely J., Vardelle M., and Fauchais P., “Temperature and velocity fields in a gas stream exiting a plasma torch.A mathematical model and its experimental verification”, Plasma Chemistry and Plasma Processing, Vol. 2, No. 3, pp. 317-332, 1982.
[27] Vardelle A., Vardelle M., and Fauchais P., “Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coating”, Plasma Chemistry and Plasma Processing, Vol. 2, No. 3, pp. 255-291, 1982.
[28] Vardelle A., Baronnet J. M., Vardelle M., and Fauchais P., “Measurements of the plasma and condensed particles parameters in a dc plasma jet”, IEEE transactions on plasma scients, Vol. PS-8, No. 4, pp. 417-424, 1980.
[29] EL-KADDAH N., McKELLIGET J., SZEKELY J., “Heat Transfer and Fluid Flow in Plasma Spraying ”, Metallurgical Transactions B, Vol. 15B, pp. 59-70, 1984.
[30] Dilawari A.H. and Szekely J., “Some Perspectives on the Modeling of Plasma Jets”, Plasma Chemistry and Plasma Processing, Vol. 7, No. 3, pp. 317-339, 1987.
[31] Dilawari A. H., Szekely J., Batdorf J., Detering R. and Shaw C. B., “The temperature profile in an Argon plasma issuing into an Argon atmosphere : a comparison of measurements and prediction”, Plasma Chemistry and Plasma Processing, Vol. 10, No. 2, pp. 321-337, 1990.
[32] Westhoff R. and Szekely J., “A model of fluid, heat flow, and electro- magnetic phenomena in a non-transferred arc plasma torch”, Jourmal of Applied Physucs, Vol. 70, No. 7, pp. 3455-3466, 1991.
[33] Seong W. N., Nishiyama H., Kamiyama S., “ Numerical Analysis on Plasma Spraying in a DC-RF Hybird Plasma Reactor ”, JSME International Journal, Series B, Vol. 39, No. 1, pp. 134-140, 1996.
[34] Sato T., Solonenko O. P., Nishiyama H., “ Numerical simulation of a particle-laden plasma flow in a complex configuration under an electromagnetic field ”, International Journal of Multiphase Flow, Vol. 29, pp. 461-474, 2002.
[35] Nishiyama H., Kuzuhara M., Solonenko O. P., Kamiyama S., “ Numerical Modeling of an Impinging and Compressible Dusted Plasma Jet Controlled by a Magnetic Field ”, Plasma Chemistry and Plasma Processing, Vol. 19, No. 3, pp.363-381, 1999.
[36] Pfender E., “Thermal Plasma Technology: Where Do We Stand and Where Are We Going?”, Plasma Chemistry and Plasma Processing, Vol. 19, No. 1, 1999.
[37] Lesniewski T. and Koch W., “Experimental study of coagulation-controlled particle growth in turbulent jets”, Journal Aerosol Science, Vol. 29, No. 1-2, pp. 81-98, 1998.
[38] Panda S. and Prantsinis S. E., “Modeling the synthesis of aluminum particles by evaporation-condensation in a aerosol flow reactor”, Nanostructure Materials, Vol. 5, No. 7-8, pp. 755-767, 1995.
[39] FLUENT 4.4 User Guide Volume 4, Fluent Inc. 1997.
[40] Gale W. F, Totemeier T. C., “Smithells Mwtals Reference Book(Eighth Edition)”, Elsevier Butterworth-Heinemann, Amsterdam, 2004.
[41] Hultgren R., Pramod D. D., Donald T. H., Molly G., and Kenneth K. K., “”Selected Values of the Thermodynamic Properties of the Elements”, American Society for Metals, Metal Parks, Ohio, 1973.
[42] 曾鴻銘,雷射生成鐵金屬蒸氣之特性研究,國立成功大學機械工程研究所碩士論文,民國93年。
[43] Hans R. G., “Plasma Spectroscopy”, McGraw-Hill Book Company, New York, 1964.
[44] 2002 Product catalog, Ocean Optics Inc., pp. 10, 2002.
[45] Amoruso S., Ausanio G., de-Lisio C., Iannotti V., Vitielleo M., Wang X., and Lanotte L., “Synthesis of nickel nanoparticles and nanparticles magnetic films by femtosecond laser ablation in vacuum”, Applied Surface Science, Vol. 247, No. 1-4, pp. 71-75, 2005.
[46] Fogler H. S., “Elements of chemical Reaction Engineering”, University of Michigan, Ann Arbor MI, 2003.
[47] Mafune F., Kohno J. Y., Takeda Y., Kondow T., Sawabe H., “Structure and stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation”, The Journal of physics Chemisrty B, Vol. 104, pp. 8333-8337, 2000.
[48] Mafune F., Kohno J.Y., Takeda Y., Kondow T., Sawabe H., “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution”, The Journal of physics Chemisrty B, Vol. 104, pp. 9111-9117, 2000.
[49] Mafune F., Kohno J.Y., Takeda Y., Kondow T., Sawabe H., “Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution”, The Journal of physics Chemisrty B, Vol. 105, pp. 5114-5120, 2001.