| 研究生: |
蘇柏翰 Su, Po-Han |
|---|---|
| 論文名稱: |
運用資料探勘技術偵測財務報表舞弊-以台灣上市(櫃)公司為例 Using Data Mining Technique to Detect Fraudulent Financial Statement |
| 指導教授: |
徐立群
Shu, Lih-Chyun |
| 共同指導教授: |
黃華瑋
Huang, Hwa-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 財務報表舞弊 、資料探勘 、機率神經網路 |
| 外文關鍵詞: | Data mining, Fraudulent financial statement, Probabilistic neural network |
| 相關次數: | 點閱:142 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
財務報表舞弊經常造成龐大損失,若能利用公開資訊偵測財報舞弊將對公司利害關係人有莫大幫助。本文以2001~2012年間台灣上市(櫃)公司因財務報表舞弊遭金融監督管理委員會證期局起訴與投資者保護中心公布的團體訴訟及仲裁案件當中之29間公司為舞弊樣本,與其配對之非舞弊公司為58間,藉由資料探勘技術(機率神經網路、支援向量機、羅吉斯迴歸、類神經網路、決策樹)、財務變數以及公司治理變數,針對財務報表年報資料來進行分析,建構出財報舞弊偵測模型。變數篩選採用獨立樣本t檢定法,選取較有影響力、差異性的變數,減少投入不必要的變數而影響分析結果。
所建構之模型依據不同類型的投入變數而分成三種型態之舞弊偵測模型,而最後結果認為以機率神經網路方法(PNN)配合選取之財務變數、公司治理變數以及Z-score所建構出來的財報舞弊偵測模型具有較佳的偵測率。
Fraudulent financial reporting often leads to huge losses. Using publicly available information to detect fraudulent financial statement will be great help to the companies’ interested. This thesis uses data mining techniques such as Probabilistic Neural Network (PNN), Support Vector Machines (SVM), Artificial Neural Network (ANN), Logistic Regression (LR), and Decision Tree (DT) to identify companies that have financial statement fraud. Each of these techniques is tested on a dataset involving 87 Taiwan companies and compared with feature selection. The model accuracy of PNN with financial variables and corporate governance variables outperformed others in this thesis, so regarded this model as a better fraud detection model.
王宏文(2000),地雷股盈餘管理行為之研究,國立政治大學會計研究所碩士論文
台灣上市櫃電子產業動態與靜之財務預警模型研究,2009 TOPCO崇越論文大賞
包宏心(2006),以RFM從ERP資料庫採礦客戶價值,2006數位科技與創新管理國際研討會
林郁翎、黃建華(2007),考慮公司治理之企業財務危機預警模型,東吳經紀商學學報,第六十四期,頁23-56
林靜宜(2002),會計詐欺與權益評價,國立中山大學財務管理學系研究所碩士論文
林嬋娟、張哲嘉(2009),董監事異常變動、家族企業與企業舞弊之關聯性,會計評論The International Journal of Accounting Studies,第48期,頁1-33
林麗雪、龍劭琪(2007),資料探勘技術應用於財務危機預警模式之建構,中華管理評論國際學報,第10卷4期
林裕晟(2010),考慮景氣循環趨勢應用資料探勘於企業財務危機之預測,國立高雄大學資訊管理系碩士班碩士論文
紀英成(2006),財務報表舞弊之現象及其識別,朝陽科技大學會計所碩士論文
高惠松(2012),年度財務報表資訊揭露對預測財務危機之有用性:預視財務危機預測模型,中華管理評論國際學報,第十五卷第四期
證券交易法第20條(民國 99 年 06 月 02 日 與現行條文同)
許伯彥(2003),財務報表舞弊風險評量模式研究,國立台灣大學會計研究所碩士論文
張麗娟、許佳豪、張耀元(2012),建構臺灣電子業財務預警─以資料探勘技術分析,臺灣銀行季刊第六十三卷第一期
黃承龍、陳穆臻、王界人(2004),支援向量機於信用評等之應用,計量管理期刊,第一卷二期,頁155~172
陳雪如、黃劭彥、史雅男、蕭鎮臺(2009),再探財務報表舞弊-風險因子新鑑識,中華管理評論國際學刊,第12卷4期,頁1-22
陳麗君(2003),應用資料探勘技術於信用卡黃金級客戶之顧客關係管理,元智大學工業工程與管理學系碩士論文
陳慶瀚(2006),機率式神經網路,義守大學電機系碩士班課程教材http://ccy.dd.ncu.edu.tw/~chen/course/Neural/ch7/pnn.doc
葉清江、齊德彰、林欣瑾(2008),企業財務報表舞弊偵測之研究,亞洲大學學術期刊, 第3卷4期,頁15-30
葉俞佛(2014),應用資料探勘技術結合股票分析方法建構投資策略,中原大學資訊管理研究所碩士論文
陳生祥(2005),運用資料探勘技術建構企業財務危機預警模式-結合財務與非財務資料,中原大學資訊管理所碩士論文
嚴文筆(2004),從內部控制觀點建構舞弊訴訟預警模型,中正大學會計與資訊科技研究所碩士論文
謝邦昌,類神經網路概述及實例,輔仁大學統計學系課程教材http://bidm.stat.fju.edu.tw/school/DOWNLOAD/neural.doc
A. Wright, R. H. Ashton (1989), Identifying audit adjustments with attention-directing procedures, Accounting Review, Vol. 64, No. 4, pp.710-728.
B. P. Green & J. H. Choi(1997), Assessing the risk of management fraud through neural-network technology, Auditing: A Journal of Practice and Theory, 16(1), pp.14–28.
C. F. Manski & S. R. Lerman(1977) , The Estimation of Choice Probabilities from Choice Based Samples, Econometric Society, Vol. 45, No. 8, pp.1977-1988.
D. Pyle(1999), Data Preparation for Data Mining, Morgan Kaufmann Publishers, Inc. p.9.
DTREG, https://www.dtreg.com/
Doumpos Spathis & Zopounidis(2002), Detecting false financial statements using published data: some evidence from Greece, Managerial Auditing Journal. 7(4), pp.179-191.
E. Kirkos, C. Spathis, Y. Manolopoulos (2007), Data mining techniques for the detection of fraudulent financial statement, Expert Systems with Applications, 32, pp.995–1003.
Guanting Chen(2006), Positive Research on the Financial Statement Fraud Factors of Listed Companies in China, Journal of Modern Accounting and Auditing, 2(6), pp.25-34.
Hawariah Dalnial, Amrizah Kamaluddin, Zuraidah Mohd Sanusi & Khairun Syafiza Khairuddin(2014), Detecting Fraudulent Financial Reporting through Financial Statement Analysis, Journal of Advanced Management Science, Vol. 2, No. 1. pp.17-22.
H. Schilit(1993), Financial Shenanigans: How to Detect Accounting Gimmicks & Fraud in Financial Reports, New York: McGraw-Hill, pp.12-335.
J. Loebbecke & P. Steinbart(1987), An Investigation of the Use of Preliminary Analytical Review to Provide Substantive Audit Evidence, AUDITING: A Journal of Practice & Theory, Vol. 6, pp.74-89.
K. M. Fanning & K. O. Cogger(1998), Neural network detection of management fraud using published financial data, International Journal of Intelligent Systems in Accounting, Finance & Management, Volume 7, Number 1, pp.21-41.
L. J. Abbott, Y. Park & S. Parker(2000), The effects of audit committee activity and independence on corporate fraud, Managerial Finance, 26, pp.55–67.
M. S. Beasley(1996), An empirical analysis of the relation between the board of director composition and financial statement fraud, The Accounting Review, 71(4), pp.443–465.
N. Scott(2006), The basis for bibliomining: frameworks for bringing together usage-based data mining and biblio metrics through data warehousing in digital library services. Information Processing & Management, 42, pp.785-804.
O. Persons(1995), Using Financial Statement Data to Identify Factors Associated with Fraudulent Financing Reporting, Journal of Applied Business Research, Vol.11, pp.38-46.
P. M. Dechow, R. G. Sloan & A. P. Sweeney(1996), Cause and consequences of earnings manipulation: An analysis of firms subject to enforcement actions by the SEC. Contemporary Accounting Research, 13(1), pp.1–36.
S. Kotsiantis, E. Koumanakos, D. Tzelepis & V. Tampakas(2006), Forecasting fraudulent financial statements using data mining, Academic Journal, Vol. 12, p. 283.
S. L. Summers & J. T. Sweeney(1998), Fraudulently misstated financial statements and insider trading: An empirical analysis, Accounting Review, Vol. 73, pp.131-146.
Somayyeh Hosseini Nia(2015), Financial ratios between fraudulent and non-fraudulent firms: Evidence from Tehran Stock Exchange, Journal of Accounting and Taxation, Vol. 7(3), pp.38-44.
T. Johnson(2009), Encyclopedia of Database Systems, chapter Data Profiling. Springer, Heidelberg.
T. B. Bell & J. V. Carcello(2000), A decision aid for assessing the likelihood of fraudulent financial reporting, AUDITING: A Journal of Practice & Theory, 19(1), pp.169–185.
U. Fayyad & P. Stolorz(1997), Data mining and KDD: promise and challenges, Further Generation Computer System, 13, pp.99-115.
V. D. Sharma(2004), Board of director characteristics, institutional ownership, and fraud: Evidence from Australia, AUDITING: A Journal of Practice & Theory, 23(2), pp.105–117.
W. H. Beaver(1966), Financial rations as predictors of failure, Journal of Accounting Research, 4, pp.77–111.
W. S. Albrecht, K. Howe & M. B. Romney(1984), Deterring Fraud: The Internal Auditor's Perspective, Altamonte Springs: the Institute of the Internal Auditor’s Research Foundation.
W. S. Albrecht, M. B. Romney & D. J. Cherrington (1980),Auditors and the Detection of Fraud, Journal of Accountancy, Vol.149, pp.63-69.
W. S. Albrecht & G. W. Wernz (1993), The three factors of fraud, Security Management, Vol.37, pp.95-96.
Z. J. Wang & X. L. Deng(2006), Corporate governance and financial distress, The Chinese Economy, 39(5), pp.5–27.
Ziawasch Abedjan, Lukasz Golab, Felix Naumann(2015), Profiling relational data: a survey, The VLDB Journal, 24, pp.557–581.
Z. Rezaee(2005), Causes, Consequence, and Deterrence of Financial Statement Fraud, Critical Perspective on Accounting, 16, No.3, pp.277-298.
Z. M. Zhang, J. J. Salerno, P. S. Yu(2003), Applying data mining in investigating money laundering crimes, Knowledge Discovery and Data Mining, 2003-08, pp.747-752.