簡易檢索 / 詳目顯示

研究生: 奎札可
Quezada, Christine Mae
論文名稱: 溶劑熱法合成奈米結構BaZnO2及其壓電相關和光電化學性質之研究
Solvothermal Synthesis and Characterization of Nanostructured BaZnO2 and Investigation of Its Piezo-related and Photoelectrochemical Performance
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 70
中文關鍵詞: BaZnO2兩步驟溶熱法壓電性質壓電子反應壓電光觸媒
外文關鍵詞: BaZnO2, two-step solvothermal synthesis, piezoelectricity, piezotronic effect, piezophotocatalysis
相關次數: 點閱:95下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BaZnO2因其空間群為P3121而被歸類為非中心對稱材料。屬於α石英族,BaZnO2為其中一種最常用的壓電材料。據文獻,BaZnO2被視為最具發展性的材料之一,因此激起學者研究的動力。
    本研究中,以兩階段溶熱法製備BaZnO2並以 XRD,SEM,以及TEM分析其特性。結果顯示含有BaZnO2相以及BaCl2 和 BaCl2˙H2O等雜質。以I-V特性圖量測壓電相關特性來佐證成功合成BaZnO2。且以熱離子發射擴散理論來計算蕭特基障壁高度之改變。
    透過在照射可見光之下分解亞甲藍溶液來探討BaZnO2之光催化以及壓電光催化性質。而在壓電光催化特性分析中則超聲波震動源為外加壓力。結果顯示外加壓力能提升光降解效率,並證實BaZnO2之壓電光催化性質。以光電化學反應測得其光電流為 0.7μA/cm2。

    BaZnO2 is classified as a noncentrosymmetric material with a space group P3121. It belongs to the α- quartz family which is one of the most used piezoelectric material. According to literature, first principle studies predicted that BaZnO2 can be a promising candidate as a piezoelectric material, thus motivating this research.
    In this study, BaZnO2 was fabricated using a two-step solvothermal synthesis. XRD, SEM and TEM were used to characterize BaZnO2. The results revealed the BaZnO2 phase along with some impurities such as BaCl2 and BaCl2˙H2O. The existence of BaZnO2 was confirmed by investigating its piezo-related properties. I-V measurements were performed and the results showed the piezotronic property of BaZnO2. The Schottky barrier height variation was also calculated using the thermionic emission-diffusion theory.
    The photocatalytic and piezophotocatalytic properties of BaZnO2 were also studied by decomposing methylene blue (MB) solution under visible light illumination. In the piezophotocatalytic experiment, both stress and ultrasonic vibration were introduced into the system. The results showed that the degradation capability of BaZnO2 was enhanced thus confirming its piezophotocatalytic property. The photocurrent of BaZnO2, which is approximately 0.7μA/cm2, was measured using a three-electrode configuration of a photoelectrochemical cell.

    CHAPTER 1 INTRODUCTION 1 A. Energy and Sustainability 1 B. Photocatalysis 1 C. Approaches to enhance photocatalytic performance 2 C.1 Tuning the band gap [15] 2 C.2 Morphology [15] 3 C.3 Composites and Heterogenous Photocatalysts [19] 3 C.4 Complex Oxide [24] 4 C.5 Sonophotocatalysis [29] 5 C.6 Piezopotential-assisted Sonophotocatalysis [32] 6 D. Piezophotocatalysis (piezopotential) [33] 7 D.1 Piezoelectricity [34] 7 D.2 Piezotronic effect [36] 8 D.3 Piezophototronic Effect [40] 10 D.4 Piezophotocatalysis[45] 12 E. Potential Piezophotocatalyst 17 F. BaZnO2 18 F.1 Structure 18 F.2 Piezoelectric Property 19 G. Fabrication 22 G.1 General Synthesis Methods for Nanostructured Oxides 22 G.2. Typical Fabrication for BaZnO2 22 H. Motivation 26 I. Novelty and Significance 27 CHAPTER 2 EXPERIMENTAL SECTION 28 A. Materials 28 B. Methodology 28 B.1 First Step Solvothermal Synthesis 28 B.2 Second Step Solvothermal Synthesis 29 C. Characterization 30 C.1 X-ray Diffraction (XRD) 30 C.2 Scanning Electron Microscopy (SEM) 31 C.3 Transmission Electron Microscopy (TEM) 32 C.4 Electric Characteristics 33 C.5 Photo-related Measurements 35 CHAPTER 3 RESULTS AND DISCUSSION 39 A. Optimizing the fabrication of BaZnO2 39 A.1 Precursor Ratio Tuning 39 A.2 pH Values 42 A.3 Reaction time for the second step solvothermal reaction 43 B. Characterization of BaZnO2 45 B.1SEM Results 45 B.2 TEM 46 C.Investigation of Piezo-Related Properties 51 C.1 Electric Characteristics 51 C.2 Piezotronic Effect 52 D. Investigation of photodegradation properties 56 D.1 Photodegradation and Piezophotodegrdation Measurement 56 E. Photoelectrochemical Performance 57 E.1 Photoelectrochemical (PEC) Measurement 57 CHAPTER 4 CONCLUSIONS 59 A. Optimization of the fabrication of BaZnO2 59 B. Characterization of BaZnO2 59 C. Investigation of Piezo-related Properties 59 D. Investigation of Photodegradation Properties 59 E. Photoelectrochemical Performance 60 FUTURE WORKS 61 REFERENCES 62

    REFERENCES

    [1] A. Braun, J. Augustynski, E. A. Chandler, S. S. Mao, E. L. Miller, J. A. Turner, and J. Ye, "Introduction," Journal of Materials Research 25, 1–2 (2010).
    [2] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, "Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25, 1–29 (2015).
    [3] Z. Shi, X. Wen, Z. Guan, D. Cao, W. Luo, and Z. Zou, "Recent progress in photoelectrochemical water splitting for solar hydrogen production," Annals of Physics 358, 236–247 (2015).
    [4] H. Li, Y. Yu, M. B. Starr, Z. Li, and X. Wang, "Piezotronic-enhanced photoelectrochemical reactions in Ni(OH)2-decorated ZnO photoanodes," Journal of Physical Chemistry Letters 6, 3410–3416 (2015).
    [5] T. Xu, L. Zhang, H. Cheng, and Y. Zhu, "Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study," Applied Catalysis B: Environmental 101, 382–387 (2011).
    [6] S. J. a. Moniz, S. a. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, "Visible-light driven heterojunction photocatalysts for water splitting – a critical review," Energy Environ. Sci. 00, 1–29 (2015).
    [7] N. Asim, M. Badeiei, K. B. Ghoreishi, N. a Ludin, and M. R. Faraji, "New developments in photocatalysts modification : case study of WO3," Advances in Fluid Mechanics and Heat & Mass Transfer 110–116 (2012).
    [8] D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant, "Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation.," Scientific reports 4, 5757 (2014).
    [9] W.-S. Chae, "Photocatalytic efficiency analysis of CdS nanoparticles with modified electronic states," Journal of Analytical Science and Technology 1, 25–29 (2010).
    [10] D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, "ZnS nano-architectures: photocatalysis, deactivation and regeneration.," Nanoscale 2, 2062–2064 (2010).
    [11] C. Karunakaran and S. Senthilvelan, "Photocatalysis with ZrO2: oxidation of aniline," Journal of Molecular Catalysis A: Chemical 233, 1–8 (2005).
    [12] A. Ibhadon and P. Fitzpatrick, "Heterogeneous photocatalysis: recent advances and applications," Catalysts 3, 189–218 (2013).
    [13] J. Zhu and M. Zäch, "Nanostructured materials for photocatalytic hydrogen production," Current Opinion in Colloid & Interface Science 14, 260–269 (2009).
    [14] M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, "Recent developments in photocatalytic water treatment technology: a review," Water Research 44, 2997–3027 (2010).
    [15] D. Sudha and P. Sivakumar, "Review on the photocatalytic activity of various composite catalysts," Chemical Engineering and Processing: Process Intensification 97, 112–133 (2015).
    [16] D. Dvoranová, V. Brezová, M. Mazúr, and M. A. Malati, "Investigations of metal-doped titanium dioxide photocatalysts," Applied Catalysis B: Environmental 37, 91–105 (2002).
    [17] Z. Zhang, Z. Luo, Z. Yang, S. Zhang, Y. Zhang, Y. Zhou, X. Wang, and X. Fu, "Band-gap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water," RSC Advances 3, 7215–7218 (2013).
    [18] N. M. Flores, U. Pal, and A. Sandoval, "Effects of morphology , surface area , and defect content on the photocatalytic dye degradation performance of ZnO nanostructures," RSC Advances 4, 41099–41110 (2014).
    [19] D. K. L. Chan, P. L. Cheung, and J. C. Yu, "A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots," Beilstein Journal of Nanotechnology 5, 689–695 (2014).
    [20] X. Chang, Z. Li, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin, and Y. Zhu, "Efficient synthesis of sunlight-driven zno-based heterogeneous photocatalysts," Materials & Design 98, 324–332 (2016).
    [21] R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, "Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination," Materials Science and Engineering C 33, 91–98 (2013).
    [22] A. Habib, T. Shahadat, N. M. Bahadur, I. M. I. Ismail, and A. J. Mahmood, "Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts," International Nano Letters 3, 1–8 (2013).
    [23] V. Stengl, S. Bakardjieva, T. M. Grygar, J. Bludská, and M. Kormunda, "TiO2-graphene oxide nanocomposite as advanced photocatalytic materials.," Chemistry Central journal 7, 41 (2013).
    [24] T. M. Breault, "Complex metal oxides for photocatalytic applications," (2013).
    [25] X. Fan, L. Zang, M. Zhang, H. Qiu, Z. Wang, J. Yin, H. Jia, S. Pan, and C. Wang, "A bulk boron-based photocatalyst for efficient dechlorination : k 3 b 6 o 10 br," (2014).
    [26] H. Wu, S. Pan, H. Yu, Z. Chen, and F. Zhang, "Synthesis, crystal structure and properties of a new congruently melting compound, K3ZnB5O10," Solid State Sciences 14, 936–940 (2012).
    [27] X. Chen, C. Yang, X. Chang, H. Zang, and W. Xiao, "Synthesis, crystal structure, and optical properties of a novel pentaborate, K2NaZnB5O10," Journal of Alloys and Compounds 492, 543–547 (2010).
    [28] J. Liu, X. Fan, Y. Zhu, J. Zhao, F. Jiang, S. Chen, H. Sun, J. Xu, W. Deng, and C. Wang, "Efficient photodechlorination of chlorophenols on polarized MZnB5O10 (M=Na and K) nonlinear optical materials," Applied Catalysis B: Environmental 181, 436–444 (2016).
    [29] C. G. Joseph, G. Li Puma, A. Bono, and D. Krishnaiah, "Sonophotocatalysis in advanced oxidation process: a short review," Ultrasonics Sonochemistry 16, 583–589 (2009).
    [30] P. Cui, Y. Chen, and G. Chen, "Degradation of low concentration methyl orange in aqueous solution through sonophotocatalysis with simultaneous recovery of photocatalyst by ceramic membrane microfiltration," Industrial and Engineering Chemistry Research 50, 3947–3954 (2011).
    [31] T. Tuziuti, K. Yasui, Y. Iida, H. Taoda, and S. Koda, "Effect of particle addition on sonochemical reaction," Ultrasonics 42, 597–601 (2004).
    [32] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, and Z. L. Wang, "Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect," Nano Letters 15, 2372–2379 (2015).
    [33] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires," Nano Energy 13, 414–422 (2015).
    [34] K. Uchino, "Advanced Piezoelectric Materials," Elsevier (2010).
    [35] A. L. Kholkin, N. A. Pertsev, and A. V Goltsev, "Piezoelectric and acoustic materials for transducer applications," , A. Safari and E. K. Akdougan, Eds. Boston, MA: Springer US, 17-38 (2008) .
    [36] K. Jenkins, V. Nguyen, R. Zhu, and R. Yang, "Piezotronic effect: an emerging mechanism for sensing applications," Sensors (Switzerland) 15, 22914–22940 (2015).
    [37] Z. L. Wang, "Piezotronics and piezo-phototronics,"Microtechnology and MEMS, (2013).
    [38] Z. L. Wang, "Piezotronic and piezophototronic effects," The Journal of Physical Chemistry Letters 1, 1388–1393 (2010).
    [39] Z. L. Wang and W. Wu, "Piezotronics for sensors and energy technology," SPIE Newsroom 4–7 (2014).
    [40] Z. L. Wang, "Progress in piezotronics and piezo-phototronics.," Advanced materials (Deerfield Beach, Fla.) 24, 4632–46 (2012).
    [41] R. Bao, C. Wang, L. Dong, C. Shen, K. Zhao, and C. Pan, "CdS nanorods/organic hybrid led array and the piezo-phototronic effect of the device for pressure mapping," Nanoscale (2016).
    [42] B. Yin, H. Zhang, Y. Qiu, Y. Chang, J. Lei, D. Yang, Y. Luo, Y. Zhao, and L. Hu, "Piezo-phototronic effect enhanced pressure sensor based on Zno/NiO core/shell nanorods array," Nano Energy 21, 106–114 (2016).
    [43] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, "Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress," (2016).
    [44] S. C. Rai, K. Wang, Y. Ding, J. K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, and Z. L. Wang, "Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array," ACS Nano 9, 6419–6427 (2015).
    [45] M. B. Starr and X. Wang, "Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.," Scientific Reports 3, 2160 (2013).
    [46] M. B. Starr, J. Shi, and X. Wang, "Piezopotential-driven redox reactions at the surface of piezoelectric materials," Angewandte Chemie - International Edition 51, 5962–5966 (2012).
    [47] K. S. Hong, H. Xu, H. Konishi, and X. Li, "Direct water splitting through vibrating piezoelectric microfibers in water," Journal of Physical Chemistry Letters 1, 997–1002 (2010).
    [48] K. S. Hong, H. Xu, H. Konishi, and X. Li, "Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers," Journal of Physical Chemistry C 116, 13045–13051 (2012).
    [49] J. M. Byun, J. S. Han, J. H. Park, S. E. Lee, and H. C. Lee, "A study on the piezoelectric properties of PZT and doped PZT thin films by sol-gel method," Materials Science Forum 663–665, 650–653 (2011).
    [50] S. Y. Chu, T. Y. Chen, I. T. Tsai, and W. Water, "Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device," Sensors and Actuators A: Physical 113, 198–203 (2004).
    [51] S. M. Hu, G. G. Peng, and D. Y. Zheng, "Effects of Sb or Ba addition on the piezoelectric properties of PZT," Applied Mechanics and Materials 700, 121–124 (2014).
    [52] K.-I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates," Nano Letters 10, 4939–4943 (2010).
    [53] M. Y. Soomro, I. Hussain, N. Bano, O. Nur, and M. Willander, "Piezoelectric power generation from zinc oxide nanowires grown on paper substrate," Rapid Research Letter 6, 80–82 (2012).
    [54] J. M. Wu, C.-Y. Chen, Y. Zhang, K.-H. Chen, Y. Yang, Y. Hu, J.-H. He, and Z. L. Wang, "Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire," ACS Nano 6, 4369–4374 (2012).
    [55] A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, "Linear and nonlinear optical properties of BiFeO3," Applied Physics Letters 92, (2008).
    [56] J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V. D. Travkin, A. A. Mukhin, and A. Loidl, "On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties," The European Physical Journal B 75, 451–460 (2010).
    [57] D. C. Jia, J. H. Xu, H. Ke, W. Wang, and Y. Zhou, "Structure and multiferroic properties of BiFeO3 powders," Journal of the European Ceramic Society 29, 3099–3103 (2009).
    [58] Y. Zeng, Y. Zheng, J. Xin, and E. Shi, "First-principle study the piezoelectricity of a new quartz-type crystal BaZnO2," Computational Materials Science 56, 169–171 (2012).
    [59] P. Labeguerie, M. Harb, I. Baraille, and M. Rerat, "Structural, electronic, elastic, and piezoelectric properties of alpha-quartz and MXO4 ( M=Al, Ga, Fe; X=P, As) isomorph compounds: a DFT study," Physical Review B - Condensed Matter and Materials Physics 81, (2010).
    [60] Y. Wang, Y. Cheng, X. He, G. Ji, and X. Chen, "Pressure effects on structural, elastic and electronic properties of BaZnO2 : first-principles study," Philosophical Magazine 95, 64–78 (2014).
    [61] R. Sui and P. Charpentier, "Synthesis of metal oxide nanostructures by direct sol − gel chemistry in supercritical fluids," Chemical Reviews 112, 3057–3082 (2012).
    [62] D. Jian, P.-X. Gao, W. Cai, B. S. Allimi, S. Pamir Alpay, Y. Ding, Z. L. Wang, and C. Brooks, "Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays," J. Mater. Chem. 19, 970–975 (2009).
    [63] A. Trunschke, "Synthesis of inorganic materials by solvothermal methods," (2012).
    [64] T. Ohnishi, H. Koinuma, and M. Lippmaa, "Pulsed laser deposition of oxide thin films," Applied Surface Science 252, 2466–2471 (2006).
    [65] S. Vallejos, F. Di Maggio, T. Shujah, and C. Blackman, "Chemical vapour deposition of gas sensitive metal oxides," Chemosensors 4, 4 (2016).
    [66] H. G. McAdie, "Thermal Analysis," Elsevier (1969).
    [67] U. Spitsbergen, "The crystal structures of BaZnO2 , BaCoO2 and BaMnO2," Acta Crystallographica 13, 197–198 (1960).
    [68] A. Hilton, "Book of abstracts," (2007).
    [69] M. A. Ryumin, Z. V. Dobrokhotova, A. L. Emelina, M. A. Bukov, N. V. Gogoleva, K. S. Gavrichev, E. N. Zorina-Tikhonova, L. I. Demina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, and V. M. Novotortsev, "Synthesis, structure and thermolysis of Ba(II)–M(II) (M=Co, Zn) bimetallic 3d-polymers as precursors of complex oxides," Polyhedron 87, 28–37 (2015).
    [70] H. G. von Schnering, R. Hoppe, and J. Zemann, "Die kristallstruktur des BaZnO2," Zeitschrift für anorganische und allgemeine Chemie 305, 241–254 (1960).
    [71] N. Takeno, "Atlas of Eh-pH diagrams intercomparison of thermodynamic databases," National Institute of Advanced Industrial Science and Technology Tokyo 285 (2005).

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE