| 研究生: |
尤磊安 Rehman, Khalil ur |
|---|---|
| 論文名稱: |
以電腦輔助設計模擬金氧半電晶體和穿隧式電晶體閘極氧化物微縮效應 Gate Oxide scaling Effect on MOSFETs and TFETs by TCAD Simulations |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 外文關鍵詞: | Tunnel Field-effect-transistor, Metal-oxide-semiconductor field effect transistor, Band-to-band tunneling, Gate-oxide scaling, Equivalent-Oxide-Thickness |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The need of continue scaling, mobile and IoT applications has increased the demand for the devices of low supply voltage and low-leakage operations. Tunnel field effect transistors (TFETs) have potential to overcome the fundamental sub-threshold limitation of 60 m V/dec limit of the traditional metal-oxide-semiconductor field effect transistor (MOSFET). The TFET has been proposed as replacement for the MOSFET while the fundamental power issue faced by the traditional MOSFET as device scaling continues the demand of Moore’s law. The TFET is the promising option as an emerging transistor for further scaling down the supply voltage, threshold voltage and power consumption of integrated circuits (ICs).
In this thesis the effect of gate oxide scaling on the MOSFET and TFET is investigated. We have simulated MOSFETs and TFETs with different equivalent-oxide-thickness (EOT), using Sentaurus TCAD. The comparison of obtained results shows that EOT scaling influences the electrical characteristics of a TFET more significantly, and a thinner EOT improves the devices performance in terms of a higher on-current and steeper subthreshold slope. EOT scaling has less effect on the MOSFET devices performance. The simulation results were also compared to experimental results, and they were in a good agreement.
References
References in chapter 1
[1] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. Computer 2003, 36, pp 68–75.
[2] M. Ionescu and H. Riel. Nature 2011, 479, pp 329–337.
[3] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc. IEEE J. Solid-State Circuits 1974, 9, pp 256–268.
[4] Appenzeller, J., Knoch, J., Björk, M. T., Riel, H. & Riess, W. Toward nanowire electronics. IEEE Trans. Electron Devices 55, 2827–2845 (2008).
[5] L. Zhang and M. Chan. Tunneling Field Effect Transistor Technology, chapter 1; Springer, 2016.
[6] Uygar E. Avci et al., Electron devices society,vol. 3 no. 3. May 2015.
[7] M. G. Pala and D. Esseni, IEEE Trans. Electron Devices, vol. 60, no. 9, pp. 2795–2801, Sep. 2013
[8] S. H. Kim et al., IEEE Elec. Dev. Lett., 2010.
[9] J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and P. Avouris, “Comparing carbon nanotube transistors—The ideal choice: A novel tunneling device design,” IEEE Trans.
Electron Devices, vol. 52, no. 12, pp. 2568–2576, Dec. 2005.
[10] W. Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, “Tunneling fieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, Aug. 2007.
[11] D. K. Mohata et al., “Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications,” in Proc. IEEE Electron Devices Meeting (IEDM), Washington, DC, USA, 2011, pp. 33.5.1–33.5.4.
References in chapter 2
[1] Sakurai, T. Perspectives of low power VLSI’s. IEICE Trans. Electron E87-C, 429–436 (IEICE, 2004).
[2] Bernstein, K., Cavin, R. K., Porod, W., Seabaugh A. C. & Welser, J. Device and architectures outlook for beyond CMOS switches. Proc. IEEE 98, 2169–2184 (2010).
[3] Seabaugh, A. C. & Zhang, Q. Low voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010).
[4] Sze, S. M. Physics of Semiconductor Devices, 1st edn (John Wiley, 1969).
[5] D. Verreck, G. Groeseneken, and A. Verhulst, “The tunnel field-effect transistor,” in Wiley Encyclopedia of Electrical and Electronics Engineering. Hoboken, NJ, USA: Wiley, 2016, pp. 1–24.
[6] L. Zhang and M. Chan, Tunneling Field Effect Transistor Technology, Springer International Publishing, 2016.
[7] B. Rajamohanan, D. Mohata, A. Ali, and S. Datta. Appl. Phys. Lett. 2013, 102(9).
[8] A. S. Verhulst, D. Leonelli, R. Rooyackers, and G.Groeseneken. J. Appl. Phys. 2011, 110(2), p 024510.
[9] L. D. Michielis, L. Lattanzio, and A. M. Ionescu. IEEE Electron Device Lett. 2012, 33, pp 1523–1525.
[10] Sentaurus Device User Guide, Version G-2012.06, Synopsys Inc., Mountain View, CA, USA, Jun. 2012. [Online]. Available: http://www.synopsys.com
[11] J. H Davies, THE PHYSICS OF LOW DIMENTSIONAL SEMICONDUCTOR, Cambridge, U.K, Cambridge Univ. press, 1998.
[12] E. O. Kane, J. phys. Chem. Solid, 12, 181,1959.
[13] E. O. Kane, J. Appl. Phys., 32, 83, 1961.
[14] Hellings G, Eneman G, Krom R, De Jaeger B, Mitard J, De Keersgieter A. Electrical TCAD simulations of a germanium pMOSFET technology. IEEE Trans Electron Dev 2010;57(10):2539–45
[15] R. N. Sajjad, W. Chern, J. L. Hoyt and D. A. Antoniadis, IEEE Trans. Electron Devices, 2016, 63, 4380–4387
[16] Peng-Fei Wang, (2013). Complementary Tunneling-FETs (CTFET)in CMOS Technology (Doctoral dissertation). Retrieved from http://mediatum.ub.tum.de/
[17] Yung-Chun Wu, Yi-Ruei Jhan. “3D TCAD Simulation for CMOS Nanoelectronic Devices”, Springer Nature Singapore, 2018.
References in Chapter 3
[1] Dewey G. et al. - Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing, International Electron Devices Meeting (2011) 785-788.
[2] Appenzeller J., Lin Y.-M., Knock J., Chen Z. and Avouris Ph. - Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design, IEEE Trans. On Electron Devices 52 (12)(2005)2568-2576.
[3] Sandow C., Knock J., Urban C., Zhao Q. T. and Mantl S. - Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors, SolidState Electron. 53 (10) (2009) 1126-1129.
[4] S. C. Lo, Y. Li, and J. H. Tsai,” Quantum Mechanical Simulation of High-k Gate Dielectrics Metal-Oxide-Semiconductor Structures”, WSEAS Transactions on Electronics, Vol. 1, No. 1, Jan. 2004, pp. 170-175.
[5] Nguyen Dang Chien, Dao Thi Kim Anh, Chun-Hsing Shih. “Rules of gate-oxide thickness reduction in scaling bulk and thin-body tunnel field effect transistors”, Vietnam Journal of Science and Technology 55 (3) (2017) 316-323.
[6] T. Ando, et al. Ultimate scaling of high-k gate dielectrics: Higher-k or interfacial layer scavenging? Materials 2012, 5, 478–500.
[7] Robertson, J. Maximizing performance for higher K gate dielectrics. J. Appl. Phys. 2008, 104, 124111–124117.
[8] Hegde, R.I.; Triyoso, D.H.; Tobin, P.J.; Kalpat, S.; Ramon, M.E.; Tseng, H.H.; Schaeffer, J.K.; Luckowski, E.; Taylor, W.J.; Capasso, C.C.; et al. Microstructure modified HfO2 using Zr addition with TaxCy gate for improved device performance and reliability. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 4–7 December 2005; pp. 35–38.
[9] Kita, K.; Kyuno, K.; Toriumi, A. Permittivity increase of yttrium-doped HfO2 through structural phase transformation. Appl. Phys. Lett. 2005, 86, 102906:1–102906:3.
[10] Tomida, K.; Kita, K.; Toriumi, A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 2006, 89, 142902:1–142902:3.
[11] Edge, L.F.; Vo, T.; Paruchuri, V.K.; Iijima, R.; Bruley, J.; Jordan-Sweet, J.; Linder, B.P.;Kellock, A.J.; Tsunoda, T.; Shinde, S.R. Materials and electrical characterization of physical vapor deposited LaxLu1-xO3 thin films on 300 mm silicon. Appl. Phys. Lett. 2011, 98, 122905:1–122905:3.
[12] Dubourdieu, C.; Cartier, E.; Bruley, J.; Hopstaken, M.; Frank, M.M.; Narayanan, V. High temperature (1,000 °C) compatible Y-La-Si-O silicate gate dielectric in direct contact with Si with 7.7 Å equivalent oxide thickness. Appl. Phys. Lett. 2011, 98, 252901:1–252901:3.
[13] Suzuki, M.; Tomita, M.; Yamaguchi, T.; Fukushima, N. Ultra-thin (EOT = 3 Å) and low leakage dielectrics of La-alminate directly on Si substrate fabricated by high temperature deposition. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 5 December 2005; pp. 433–436.
[14] Arimura, H.; Brown, S.L.; Callegari, A.; Kellock, A.; Bruley, J.; Copel, M.; Watanabe, H.; Narayanan, V.; Ando, T. Maximized benefit of La-Al-O higher-k gate dielectrics by optimizing the La/Al atomic ratio. IEEE Electron Device Lett. 2011, 32, 288–290.
[15] Ando, T.; Frank, M.M.; Choi, K.; Choi, C.; Bruley, J.; Hopstaken, M.; Copel, M.; Cartier, E.; Kerber, A.; Callegari, A.; Lacey, D.; Brown, S.; Yang, Q.; Narayanan, V. Understanding mobility mechanisms in extremely scaled HfO2 (EOT 0.42 nm) using remote interfacial layer scavenging technique and Vt-tuning dipoles with gate-first process. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2009; pp. 423–426.
[16] Arimura, H.; Haight, R.; Brown, S.L.; Kellock, A.; Callegari, A.; Copel, M.; Watanabe, H.; Narayanan, V.; Ando, T. Temperature-dependent La- and Al-induced dipole behavior monitored by femtosecond pump/probe photoelectron spectroscopy. Appl. Phys. Lett. 2010, 96, 132902:1–132902:3
[17] Rozen, J.; Ando, T.; Brown, S.L.; Bruley, J.; Cartier, E.; Kellock, A.J.; Narayanan, V. Work function control and equivalent oxide thickness scaling below 9 Å in a LaAlO-silicate interfacial layer/HfO2 stack compatible with gate last processing. Presented at the 2011 IEEE Semiconductor Interface Specialists Conference, Arlington, VA, USA, 6–8 December 2011.
[18] Kim, H.; McIntyre, P.C.; Chui, C.O.; Saraswat, K.C.; Stemmer, S. Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 2004, 96, 3467–3472.
[19] Choi, C.; Kang, C.Y.; Rhee, S.J.; Abkar, M.S.; Krishna, S.A.; Zhang, M.; Kim, H.; Lee, T.; Zhu, F.; Ok, I.; Koveshnikov, S.; Lee, J.C. Fabrication of TaN-gated ultra-thin MOSFETs(EOT < 1.0 nm) with HfO2 using a novel oxygen scavenging process for sub 65 nm application. In Proceedings of VLSI Technology Symposium, Kyoto, Japan, 14–18 June 2005; pp. 208–209.
[20] Takahashi, M.; Ogawa, A.; Hirano, A.; Kamimuta, Y.; Watanabe, Y.; Iwamoto, K.; Migita, S.; Yasuda, N.; Ota, H.; Nabatame, T.; Toriumi, A. Gate-first processed FUSI/HfO2/HfSiOX/Si MOSFETs with EOT = 0.5 nm Interfacial layer formation by cycle-by-cycle deposition and annealing. In Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 523–526.
[21] Migita, S.; Morita, Y.; Mizubayashi, W.; Ota, H. Preparation of epitaxial HfO2 film (EOT = 0.5 nm) on Si substrate using atomic-layer deposition of amorphous film and rapid thermal crystallization (RTC) in an abrupt temperature gradient. In Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 269–272.
[22] W. Vandenberghe, A. S. Verhulst, G. Groeseneken, B. Soree, and W. Magnus, “Analytical model for point and line tunneling in a tunnel field-effect transistor,” in Proc. Int. Conf. SISPAD, 2008, pp. 137–140.
[23] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Modeling the impact of junction angles in tunnel field-effect transistors,” Solid State Electron., vol. 69, pp. 31–37, Mar. 2012.
[24] Zachery A Jacobson, (2013). Band-to-Band Tunneling Transistors: Scalability and Circuit Performance (Doctoral dissertation). Retrieved from https://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-34.html
References in Chapter 4
[1] J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and P. Avouris, “Comparing carbon nanotube transistors—The ideal choice: A novel tunneling device design,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2568–2576, Dec. 2005.
[2] W. Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, “Tunneling fieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, Aug. 2007.
[3] D. K. Mohata et al., “Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications,” in Proc. IEEE Electron Devices Meeting (IEDM), Washington, DC, USA, 2011, pp. 33.5.1–33.5.4.
[4] Nguyen Dang Chien, Dao Thi Kim Anh, Chun-Hsing Shih. Roles of gate-oxide thickness reduction in scaling bulk and thin-body tunnel field effect transistors. Vietnam Journal of Science and Technology 55 (3) (2017) 316-323.
[5] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects and challenges,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 88–95, May 2015.
[6] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. D. Meyer, “Modeling the impact of junction angles in tunnel field-effect transistors,” Solid State Electron., vol. 69, pp. 31–37, Mar. 2012.
[7] R. K. Jana, G. L. Snider, D. Jena, Phys. Status Solidi C 2013, 10, 1469.
[8] S. Salahuddin, S. Datta, presented at IEDM 2008, San Francisco, CA, USA, December 2008.
[9] A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid, S. Khandelwal, R. Ramesh, C. Hu, S. Salahuddin, IEEE Electron Device Lett. 2016, 37, 111.
校內:2021-08-13公開