簡易檢索 / 詳目顯示

研究生: 顧若桐
Gu, Ruo-Tong
論文名稱: 中孔洞氧化矽球在向列型液晶中之新穎現象與其應用
The novel behavior of mesoporous silica hollow sphere in nematic liquid crystals and its application
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 向列型液晶拓樸缺陷聚集中孔洞氧化矽球光鉗
外文關鍵詞: nematic liquid crystal, topological defect, aggregation, mesoporous silica hollow sphere, optical tweezer
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PDLC是一種藉由改變外加電場或溫度來調控材料穿透度的一種常見的散射型元件,但PDLC在陽光或者UV光的照射之下容易質變並失去材料的散射效果。為了改善並克服PDLC本身不耐光照的特性,許多其他材料曾被考慮作為替代的參雜物用以製作散射元件。但當球狀材料做為參雜物進入液晶當中時,液晶分子的連續彈性體會被破壞並出現分子不連續的情形,這些不連續點被稱作拓樸缺陷且會使粒子與粒子聚集在一起,無法有效的利用在散射元件當中。
    中孔洞氧化矽球(空心球)是一種具有粗糙孔洞表面的新型材料,他可以均勻的散佈在向列型液晶當中且有效避免粒子與粒子之間的聚集效應。為了了解空心球在液晶當中的特性以及周圍液晶組態,我們使用偏光顯微鏡與光鉗做為觀察的工具。我們可以透過改變製作空心球時所使用的氧化矽原來製備具有較高或者較低極性的空心球殼,而降低空心球所具有的極性則可以有效減少空心球與液晶之間的交互作用力。
    在這個研究工作當中,我們展示了空心球與實心球在不同外加電場下時周圍液晶分子受影響的結果。與實心球結果的對照之下顯示,空心球可以擾亂較大區域的液晶分子,並可以抵抗較高電場的作用力。光鉗的受力結果顯示,具有較高極性的空心球與光鉗之間沒有產生任何的交互作用,空心球可以穩定的固定在樣本當中。而當空心球殼的極性被去除後,空心球粗糙表面所引起的液晶分子亂序結構縮減,空心球則開始可以被光鉗有效的拉動。我們進一步引入100 nm的空心小球做為附加參雜物後發現,隨著空心小球濃度的上升,光鉗所需推動較低極性的空心球的力有明顯下降的趨勢。藉由上述所發現的空心球特性與手法,我們可以將空心球排列成特定結構,且空心球與空心球之間維持穩定不產生聚集。研究工作顯示空心球實為良好的散射元件參雜材料。

    Polymer dispersing liquid crystal is a well-known scattering device which transmittance can be tuned by controlling external applied voltage or temperature. But under the illumination of sunshine or UV light, PDLC will change it characteristic and lose the ability to scatter incident light. One may consider alternating the dispersing material to overcome the disadvantage of PDLC and extend the lifespan of device. However, due to the destruction of elastic continuum upon particle dispersion, colloids in liquid crystal are likely to create topological defects and eventually aggregate into a large cluster.
    Mesoporous hollow silica sphere (MPSHS) is a novel material with highly rough surface which can avoid particle aggregation and homogeneously dispersed in nematic liquid crystals. We intend to realize the characteristic and configuration of MPSHSs in liquid crystal via polarized optical tweezer (POM) observation and optical tweezer interaction. MPSHSs with higher or lower polarity can be manufactured depending on the silica source of particle shell. Removing the polarity of MPSHS efficiently lowers the dipole interaction between particle and liquid crystal.
    We demonstrate the influence of external electric field on MPSHS and the difference between solid silica spheres (SSS) under POM. MPSHSs possess larger distortion area and higher electric field tolerance in contrast with SSS. No interactions have been observed between MPSHS with higher polarity and optical tweezer under any laser power. By removing the polarity of MPSHS can suppress the construction of disorder layer and the particles are movable. We further introduce 100 nm MPSHS to lower the energy barrier induced by MPSHS. As the concentration of 100 nm MPSHS increase, the force required to drive MPSHS with lower polarity thus drops. Using these characteristics of MPSHS, one can arrange MPSHSs into specific stable structures without interactions between. MPSHSs present as a good material for scattering device.

    Chapter 1 Introduction.............1 1.1 Scattering device.............1 1.2 Colloid behavior in liquid crystal..........1 1.3 Optical tweezer applications...........2 Chapter 2 liquid crystal and colloids...........3 2.1 Liquid crystals.............3 2.1.1 Liquid crystal phase...........3 2.1.2 Elastic continuum..........5 2.1.3 Anchoring force of surface and particle.......5 2.1.4 Frank’s free energy...........6 2.1.5 Free energy in Q tensor form.........8 2.1.6 Freedericksz transition.........10 2.2 Solid silica sphere (SSS) ..........11 2.2.1 Topological defect of colloids in LCs.......11 2.2.2 SSS aggregation...........13 2.3 Mesoporous silica hollowed sphere (MPSHS) .......15 2.3.1 MPSHS structure...........15 2.3.2 Polarity of silica template.........16 2.3.3 MPSHS behavior in liquid crystal........16 2.3.4 Differential scanning calorimetry (DSC) analyzation....21 2.4 Impurities formed by nanometer MPSHSs........22 Chapter 3 POM observation and analyzation of MPSHS.......25 3.1 Polarized optical microscopy (POM) .........25 3.2 Liquid crystal observation under POM.........26 3.2.1 Liquid crystal configuration around particle......26 3.2.2 External electric field and analyze method......27 3.3 Simulations of POM for MPSHS..........28 Chapter 4 Optical tweezer............32 4.1 Optical tweezer principle in isotropic media.......32 4.2 Optical tweezer principle for SSS in liquid crystal.......33 4.3 Optical tweezer applies on MPSHS in liquid crystal......37 Chapter 5 Experiment............39 5.1 Liquid crystal cell preparation.........39 5.2 POM observation............41 5.3 Optical tweezer.............42 5.4 Scattering transmittance of different temperature.......43 Chapter 6 Result and discussion..........44 6.1 SSS aggregation............44 6.2 Homogeneous dispersion of MPSHS........45 6.2.1 Total view of liquid crystal cell........45 6.2.2 Liquid crystal phase around MPSHS........46 6.3 External electric field applied on particles........47 6.3.1 SSS analyzation...........47 6.3.2 MPSHS analyzation...........49 6.3.3 Comparison between SSS and MPSHS........51 6.3.4 MPSHS with lower polarity under electric field.....52 6.4 Optical tweezer.............54 6.4.1 Interaction of SSS..........54 6.4.2 Interaction of MPSHS..........58 6.4.3 Laser trapping of MPSHS with lower polarity with impurities...59 6.4.4 MPSHS with lower polarity arrangement......65 6.5 MPSHS utilized on smart window..........67 6.5.1 Transmittance variation with temperature......67 Chapter 7 Conclusion and future work.........68 Reference...............70

    [1] deGennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Clarendon Press. p. 112–116. (1993)
    [2] Vertogen G., Elastic constants and the continuum theory of liquid crystals (1982)
    [3] Berreman D. W., Alignment of liquid crystals by grooved surfaces. Mol. Cryst. Liq. Cryst. 23. 215. (1973)
    [4] Frank F. C., On the theory of liquid crystals. Discuss. Faraday Soc., 25, 19-28 (1958)
    [5] Sonin A.A., The surface Physics of Liquid Crystals (1995)
    [6] Mottram, Nigel J., and Christopher JP Newton. Introduction to Q-tensor theory. arXiv preprint arXiv1409.3542. (2014)
    [7] Amoddeo, A., R. Barberi, and G. Lombardo. Surface and bulk contributions to nematic order reconstruction. Physical Review E 85, 061705. (2012)
    [8] Kos, Žiga, and Miha Ravnik. Relevance of saddle-splay elasticity in complex nematic geometries. Soft matter 12, 1313-1323. (2016)
    [9] Collings, Peter J.; Hird, Michael. Introduction to Liquid Crystals. Chemistry and Physics. Taylor & Francis Ltd. (1997)
    [10] Lavrentovich, Oleg D. Transport of particles in liquid crystals. Soft Matter 10, 1264-1283. (2014)
    [11] Lubensky, T. C., et al. Topological defects and interactions in nematic emulsions. Physical Review E 57, 610. (1998)
    [12] Škarabot, M., and I. Muševič. Direct observation of interaction of nanoparticles in a nematic liquid crystal. Soft Matter 6, 5476-5481. (2010)
    [13] Takahashi, Kenji, Masatoshi Ichikawa, and Yasuyuki Kimura. Force between colloidal particles in a nematic liquid crystal studied by optical tweezers. Physical Review E 77, 020703. (2008)
    [14] Yada, Makoto, Jun Yamamoto, and Hiroshi Yokoyama. Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers. Physical review letters 92, 185501. (2004)
    [15] Yamamoto, Jun, and Hajime Tanaka. Transparent nematic phase in a liquid-crystal-based microemulsion. Nature 409, 321-325. (2001)
    [16] Olympus, Basic of polarizing microscopy
    [17] Gil, J. J., & Bernabeu, E. Obtainment of the polarizing retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik, 76, 67-71. (1987)
    [18] Crawford,R.O., Boyko,E.P., Wagner,B.G., Erdmann,J.H., Žumer,S., & J. William Doane., J.W. Microscope textures of nematic droplets in polymer dispersed liquid crystals. J. Appl. Phys. 69, 6380. (1991)
    [19] Li, J., Gauza, S., & Wu, S.-T. Temperature effect on liquid crystal refractive indices. Journal of Applied Physics, 96, 19–24. (2004)
    [20] Demus, D., Goodby, J., Gray, G., Spiess, H.- W. and Vill, V. Physical properties of liquid crystals. Weinheim: Wiley-VCH, p.41. (1999)
    [21] Ashkin, A., acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156. (1970)
    [22] Kats, A. V., and V. M. Kontorovich. Bending of Surface and Self-focusing of a Laser Beam in a Linear Medium. ZhETF Pisma Redaktsiiu 9, 192. (1969)
    [23] Muševič, I., et al. Laser trapping of small colloidal particles in a nematic liquid crystal: clouds and ghosts. Physical review letters93, 187801. (2004)
    [24] Igor Muševič, Liquid crystal Colloids page 99-118 (2017)
    [25] Samitsu, Sadaki, Yoichi Takanishi, and Jun Yamamoto. Molecular manipulator driven by spatial variation of liquid-crystalline order. Nature materials 9, 816. (2010)
    [26] Ondris‐Crawford, Renate, et al. Microscope textures of nematic droplets in polymer dispersed liquid crystals. Journal of applied physics 69, 6380-6386. (1991)
    [27] Muševič, Igor, et al. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313,5789, 954-958. (2006)

    無法下載圖示 校內:2023-07-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE