簡易檢索 / 詳目顯示

研究生: 李靜怡
Li, Ching-Yi
論文名稱: 白麴菌(Saccharomycopsis fibuligera)SNF4基因之功能性探討
Characterization of yeast Saccharomycopsis fibuligera SNF4 gene
指導教授: 宋皇模
Sung, Huang-Mo
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 白麴菌酵母菌SNF4基因葡萄糖抑制作用
外文關鍵詞: Saccharomyces cerevisiae, Saccharomycopsis fibuligera, glucose repression, SNF4
相關次數: 點閱:102下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葡萄糖抑制作用現象存在許多微生物中,在Saccharomyces cerevisiae酵母菌中,當外在環境存有大量葡萄糖時,葡萄糖以外的碳源利用會受到轉錄抑制子MIG1蛋白參與的轉錄調控而被抑制,迫使酵母細胞優先使用葡萄糖,並抑制其它碳源的利用;當環境中的葡萄糖漸少時,SNF4蛋白會參與幫助解除葡萄糖抑制,回復葡萄糖以外之碳源的使用能力。近期研究顯示,在白麴菌Saccharomycopsis fibuligera中也存在葡萄糖抑制現象,白麴菌為一種具分泌大量外泌性酵素能力的酵母菌,其外泌性酵素的分泌會受到葡萄糖抑制作用影響,但有關白麴菌中參與葡萄糖抑制的相關基因研究非常稀少。為了尋找白麴菌中與葡萄糖抑制相關的基因,本研究利用S. cerevisiae酵母菌中參與葡萄糖抑制的相關基因與實驗室先前所建立的白麴菌基因體資料庫進行比對,找到了一段與S. cerevisiae SNF4具有66%相似度(identy)的核甘酸序列,並將其命名為sfSNF4,再以兩階段置換(two step swapping)的方式在S. cerevisiae酵母菌中表現sfSNF4,以瞭解S. cerevisiae酵母菌與白麴菌之間SNF4功能的相似程度。本研究首先建立了3株S. cerevisiae SNF4Δ的基因剔除株,接著再將這些基因剔除株的基因體中插入sfSNF4,得到S. cerevisiae SNF4Δ:: sfSNF4基因置換株。SNF4Δ之酵母菌由於缺乏SNF4蛋白,無法解除葡萄糖抑制,不能生長在非醱酵性碳源(3%甘油)的培養基中,所以我利用此現象進行功能性互補試驗(functional complementation assay)。實驗結果顯示在SNF4Δ:: sfSNF4酵母菌菌株中,細胞內表現的sfSNF4依舊無法回復SNF4Δ酵母菌菌株使用非醱酵性碳源的能力,然而有趣的是,外來的sfSNF4會導致S. cerevisiae在YPD中生長速度變慢,其世代週期(doubling time)為2.96±0.17(hrs),與野生型1.44±0.02(hrs)或SNF4Δ菌株1.67±0.04(hrs)相比,具有顯著差異(P=0.004<0.05;P=0.006<0.05);若在SNF4Δ:: sfSNF4菌株中表現帶有酵母菌SNF4的pRS413-scSNF4表現載體,其世代週期為2.99±0.35(hrs),與SNF4Δ:: sfSNF4菌株相比沒有顯著差異(P=0.924>0.05);此外,pRS413-scSNF4表現載體可以拯救S. cerevisiae SNF4Δ基因剔除株使用非發酵性碳源(甘油)的能力而生長在含3%甘油的YPG培養基中,然而在S. cerevisiae SNF4Δ:: sfSNF4基因置換株中卻無法觀察到此現象;綜合以上的結果顯示,白麴菌sfSNF4和酵母菌S. cerevisiae scSNF在功能上具有差異,外來的sfSNF4可能會擾亂S. cerevisiae酵母菌中葡萄糖抑制的基因表現調控,而影響葡萄糖代謝並導致生長延遲。

    Glucose repression occurs widely in fungi and bacteria. When glucose is present in the medium, the genes required for the utilization of alternative carbon sources are repressed, transcribed at low level or not at all. In yeast Saccharomyces cerevisiae, Snf4p is required for derepression of glucose-suppress genes in response to glucose depletion. Previous studies suggested that glucose repression is also present in yeast Saccharomycopsis fibuligera which has many applications in industries. By 454 sequencing and sequence similarity analysis, we identify a putative SNF4 gene of S. fibuligera, sfSNF4 which has 66% nucleotide sequence identities with S. cerevisiae SNF4. To understand the functional similarity of S. cerevisiae SNF4 and S. fibuligera SNF4, we use two-step swapping procedures to replace S. cerevisiae SNF4 gene with sfSNF4. We obtained 3 independent S. cerevisiae SNF4Δ:: sfSNF4 clones which the SNF4 gene was replaced by sfSNF4. However, the replacement of S. cerevisiae SNF4 with sfSNF4 dose not rescue the genetic defect of losing the SNF4 gene in S. cerevisiae for not been able to grow with non-fermentable carbon source. Interestingly, cells of S. cerevisiae SNF4Δ:: sfSNF4 grow poorly in glucose containing nutrient media (YPD) compare to wild type S. cerevisiae and shows obvious growth defect compare to wild type S. cerevisiae and S. cerevisiae SNF4Δ. We believe that the expression of sfSNF4 gene may interfere with the glucose metabolism of S. cerevisiae by disrupting the expression regulation of glucose repression. Our results suggest that there might be functional differences between S. cerevisiae SNF4 and S. fibuligera SNF4.

    摘要 i 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 ix 第一章:序論 1 第一節、前言 1 1-1、酵母菌Saccharomyces cerevisiae的葡萄糖抑制與其轉錄調控 1 1-2、SNF1複合蛋白的組成與其功能調控 4 1-3、白麴菌Saccharomycopsis fibuligera發展潛力與其葡萄糖抑制 6 1-4、白麴菌的生殖遺傳方式與基因功能研究 10 第二章:材料與方法 13 第一節、實驗材料 13 1-1、酵母菌菌株 13 1-2、實驗藥品與材料 13 1-3、實驗儀器 15 第二節、實驗方法 17 2-1、檢驗白麴菌中葡萄糖抑制與非醱酵碳源的利用 17 2-2、Two-step gene swapping 17 2-3、在S. cerevisiae SNF4Δ::sfSNF4菌株中以表現載體表現scSNF4 20 第三章:結果與討論 22 第一節、白麴菌S . fibuligera 的葡萄糖抑制作用現象 22 第二節、白麴菌SNF4基因序列鑑定與分析 23 2-1利用白麴菌基因組資料庫預測白麴菌sfSNF4基因 23 2-2白麴菌sfSNF4基因的功能性區段(functional domain)分析 24 第三節、白麴菌和S. cerevisiae酵母菌的SNF4基因功能性關係比較 25 3-1以 S. cerevisiae 進行scSNF4與sfSNF4基因功能的互補測試 25 3-2 sfSNF4與scSNF4解除葡萄糖抑制的功能不互補 26 3-3 sfSNF4造成S. cerevisiae酵母菌生長延遲 27 第四節、白麴菌和S. cerevisiae酵母菌的SNF4基因功能性差異 28 第四章:結論 31 參考文獻 32 附錄 51 附錄一、SNF4基因剃除株定序確認結果 51 附錄二、SNF4基因置換株定序確認結果 54

    1. Adams J, Chen Z-P, Van Denderen BJW, Morton CJ, Parker MW, Witters LA, Stapleton D, Kemp BE. Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site. Protein Science.13(1):155-65, 2004.
    2. Aon MA, Cortassa S. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Biotechnology and Bioengineering.59(2):203-13, 1998.
    3. Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Sciences.22(1):12-3, 1997.
    4. Bolingue W, Rosnoblet C, Leprince O, Vu BL, Aubry C, Buitink J. TheMtSNF4b subunit of the sucrose non-fermenting-related kinase complex connects after-ripening and constitutive defense responses in seeds ofMedicago truncatula. The Plant Journal.61(5):792-803, 2010.
    5. Bradford KJ. Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds. Plant Physiology.132(3):1560-76, 2003.
    6. Carlson M. Regulation of sugar utilization in Saccharomyces species. JOURNAL OF BACTERIOLOGY.169(11):4873-7, 1987.
    7. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnology Advances.27(4):423-31, 2009.
    8. Corvey C. Carbon Source-dependent Assembly of the Snf1p Kinase Complex in Candida albicans. Journal of Biological Chemistry.280(27):25323-30, 2005.
    9. Estruch F, Treitel MA, Yang X, Carlson M. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics.132(3):639-50, 1992.
    10. Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev.62(2):334-61, 1998.
    11. Hardie DG, Carling D, Carlson M. THE AMP-ACTIVATED/SNF1 PROTEIN KINASE SUBFAMILY: Metabolic Sensors of the Eukaryotic Cell? Annual Review of Biochemistry.67(1):821, 1998.
    12. Hedbacker K, Townley R, Carlson M. Cyclic AMP-Dependent Protein Kinase Regulates the Subcellular Localization of Snf1-Sip1 Protein Kinase. Molecular and Cellular Biology.24(5):1836-43, 2004.
    13. Itoh T, Ohtsuki I, Yamashita I, Fukui S. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. JOURNAL OF BACTERIOLOGY.169(9):4171-6, 1987.
    14. Johnston M. Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends in Genetics.15(1):29-33, 1999.
    15. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism.1(1):15-25, 2005.
    16. Kemp BE. Bateman domains and adenosine derivatives form a binding contract. The Journal of Clinical Investigation.113(2):182-4, 2004.
    17. Kleinow T, Bhalerao R, Breuer F, Umeda M, Salchert K, Koncz C. Functional identification of an Arabidopsis Snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast. The Plant Journal.23(1):115-22, 2000.
    18. Knop M. Yeast cell morphology and sexual reproduction – A short overview and some considerations. Comptes Rendus Biologies.334(8–9):599-606, 2011.
    19. Knox AM, du Preez JC, Kilian SG. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme and Microbial Technology.34(5):453-460, 2004.
    20. Kocabıyık S, Özel H. An extracellular Pepstatin insensitive acid protease produced by Thermoplasma volcanium. Bioresource Technology.98(1):112-117, 2007.
    21. Levine J, Tanouye L, Michels C. The UASMAL is a bidirectional promotor element required for the expression of both the MAL61 and MAL62 genes of the Saccharomyces MAL6 locus. Current Genetics.22(3):181-189, 1992.
    22. Lin X-h, Ke C-r, Wu B-s, Zheng Y-b, Li L, Chen Y-q, Huang J-z. Construction of Saccharomyces cerevisiae mutant with knockout of SNF4 gene. Chinese Journal of Biotechnology.27(4):572-578, 2011.
    23. Liu G-L, Wang D-S, Wang L-F, Zhao S-F, Chi Z-M. Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal Genetics and Biology.48(9):904-913, 2011.
    24. Lundin M, Nehlin JO, Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol.14(3):1979-1985, 1994.
    25. Machida M, Ohtsuki I, Fukui S, Yamashita I. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Applied and Environmental Microbiology.54(12):3147-3155, 1988.
    26. McCartney RR, Schmidt MC. Regulation of Snf1 Kinase: ACTIVATION REQUIRES PHOSPHORYLATION OF THREONINE 210 BY AN UPSTREAM KINASE AS WELL AS A DISTINCT STEP MEDIATED BY THE Snf4 SUBUNIT. Journal of Biological Chemistry.276(39):36460-36466, 2001.
    27. Miura F, Kawaguchi N, Yoshida M, Uematsu C, Kito K, Sakaki Y, Ito T. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics.9(1):574, 2008.
    28. Nehlin JO, Carlberg M, Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J.10(11):3373-3377, 1991.
    29. Nga BH, Chiu LL, Koh SI, Yip CW, Harashima S, Oshima Y. Occurrence of genetic segregation in a putative haploid strain of Endomyces fibuliger met by spontaneous sectoring of protoplast fusants. World Journal of Microbiology and Biotechnology.10(4):465-471, 1994.
    30. Ngan WY, Nga BH, Pridmore D, Mollet B, Tan HM. Transformation of Endomyces fibuliger based on its gene for orotidine-5'-phosphate decarboxylase. Gene.254(1-2):97-103, 2000.
    31. Ni M, Feretzaki M, Sun S, Wang X, Heitman J. Sex in Fungi. Annual Review of Genetics.45(1):405-430, 2011.
    32. Rudolph MJ, Amodeo GA, Iram SH, Hong S-P, Pirino G, Carlson M, Tong L. Structure of the Bateman2 Domain of Yeast Snf4: Dimeric Association and Relevance for AMP Binding. Structure.15(1):65-74, 2007.
    33. Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresource Technology.99(11):5099-5103, 2008.
    34. Tu J, Carlson M. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Molecular and Cellular Biology.14(10):6789-6796, 1994.
    35. Vincent O. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes & Development.15(9):1104-1114, 2001.
    36. Wang D, Chi Z, Zhao S, Chi Z-M. Disruption of the acid protease gene in Saccharomycopsis fibuligera A11 enhances amylolytic activity and stability as well as trehalose accumulation. Enzyme and Microbial Technology.49(1):88-93, 2011.
    37. Wilson WA, Hawley SA, Hardie DG. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Current Biology.6(11):1426-1434, 1996.
    38. Yamashita I, Hirata D, Machida M, Fukui S. Cloning and Expression in Saccharomyces cerevisiae of the Secretable Acid Protease Gene from Saccharomycopsis fibuligera. Agricultural and Biological Chemistry.50(1):109-113, 1986.
    39. Yan H, Jia L-H, Lin Y-P, Jiang N. Glycerol accumulation in the dimorphic yeastSaccharomycopsis fibuligera: cloning of two glycerol 3-phosphate dehydrogenase genes, one of which is markedly induced by osmotic stress. Yeast.25(9):609-621, 2008.
    40. Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces Responds to Nutrients. Annual Review of Genetics.42(1):27-81, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE