簡易檢索 / 詳目顯示

研究生: 賴玫君
Lai, Mei-Chun
論文名稱: 氯化鈷-1-烷基-3-甲基咪唑離子液體中電沉積鈷
Electrodeposition of Cobalt from Cobalt chloride- 1-alkyl-3-methylimidazolium chloride ionic liquid
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 131
中文關鍵詞: 奈米線離子液體
外文關鍵詞: Co, nanowire, ionic liquid
相關次數: 點閱:61下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氯化鈷-1-乙基-3-甲基咪唑(cobalt chloride-1-ethyl-3- methylimidazolium chloride,CoCl2-EMIC)離子液體與氯化鈷-1-辛基-3-甲基咪唑(Cobalt chloride-1-octyl-3- methylimidazolium chloride,CoCl2-OMIC)離子液體中電沉積鈷,再針對兩種系統所得的 Co 形貌去做探討與比較。在離子液體中,當 Co 以較大的 cluster 形式存在,才可從系統中被還原出來。在 EMIC 系統中,當不同莫耳比例的 CoCl2-EMIC、改變電沉積時的電量密度以及溫度,會影響所得到之 Co 鍍層的性質與形貌。利用電位階升法發現在較高溫時,Co 在玻璃碳電極上成核的核密度較高。在不使用模板的輔助及未攪拌的狀態下,利用定電位方式電沉積,當施予足夠的過電位即可以得到沿基材垂直生長的 Co 金屬奈米線結構。而在 CoCl2-OMIC 的系統中,主要在較低溫(50oC)做電沉積,其形貌不管是在各種條件下均較 EMIC 系統下緻密,多為顆粒狀結構,黏度為影響其形貌的很大因素。電沉積過程主要是以擴散控制成長。電沉積樣品的表面形貌以掃描式電子顯微鏡(SEM)觀察、成份與晶形結構是以能量分散光譜儀(EDS)、穿透式電子顯微鏡(TEM)以及光電子能譜儀(XPS)進行分析鑑定。沉積出的 Co 奈米線為反鐵磁材料,在低溫下(10K)有良好的磁滯現象。

    In this study, cobalt chloride-1-ethyl-3-methylimidazolium chloride (CoCl2-EMIC) and cobalt chloride-1-octyl-3-methylimidazolium chloride (CoCl2-OMIC) ionic liquids have been used to electrodeposit Co matal. The morphologies of the Co metal were examined by scanning electromicreoscopy (SEM), and the composition of the electrodeposits were examined by energy dispersive X-ray spectroscopy (EDS), Transmission Electron Microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Investigate the Co metal morphologies and properties from different electrodeposition conditions and compare the results from the two systems. Chronoamperometric results indicate that the Co metal nuclei density on GC electrode was increased at higher temperature. Direct template-free electrodeposition of aligned Co nanowires was achieved on a tungsten substrate in a quiescent Lewis acidic CoCl2–EMIC ionic liquid at 100℃ by applying an extremely large deposition overpotential. The morphologies of Co deposited from CoCl2-OMIC were more compact composed of granular structure.Higher viscosity of OMIC is the main factor for the morphologies of Co metal. The electrodeposition of Co metal growth processes were mainly diffusion controlled. Co nanowires were anti-ferromagnetic material and showed high coercivity at 10K.

    摘要 I Abstract II 目錄 V 圖目錄 VII 表目錄 XV 第一章 緒論 1 1-1離子液體(Ionic liquild) 1 1-2 製備奈米線之文獻回顧 5 1-2-1 溶膠凝膠法(sol–gel)製備奈米線 5 1-2-2 水熱法(hydrothermal)製備奈米線 7 1-2-3 陽極氧化鋁模板輔助沉積法(template-assisted method)製備奈米線 8 1-2-4 無模板方式電沉積製備奈米線 10 1-3 研究動機與目的 12 第二章 實驗原理 14 2-1 電化學原理 14 2-2循環伏安法(Cyclic Votammetry,CV) 16 2-3電流時間法(Chronoamperometry) 18 2-4電化學成核理論 18 2-4-1 成核動力學 19 2-4-2 二維空間的核成長(2D growth) 21 2-4-3 三維空間的核成長(3D growth) 22 2-5 磁性簡介 28 2-5-1 磁滯現象 28 2-5-2 順磁性(Paramagnetic)物質 30 2-5-3 鐵磁性(Ferrimagnetic)物質 30 2-5-4 反鐵磁性(Anti-ferromagnetic)物質 31 2-5-5 陶磁磁性(Ferrimagnetism)物質 32 2-5-6 反磁性(Diamagnetic)物質 33 第三章 實驗 34 3-1 實驗藥品 34 3-2 熔鹽的配製 36 3-3 裝置與儀器 37 第四章 實驗結果與討論 42 4-1 Co2+ 在 CoCl2-EMIC 熔鹽中的行為 42 4-1-1 Co2+ 在 CoCl2-EMIC 熔鹽中的配位形態 42 4-1-2 Co2+ 在 CoCl2-EMIC熔鹽中的電化學行為 45 4-1-3 Co2+ 在 CoCl2-EMIC熔鹽中還原成 Co 的成核反應 49 4-1-4 Co2+ 在 CoCl2-EMIC熔鹽中不同條件下電沉積的結果 54 4-1-5 EDS、TEM 與 XPS 分析 89 4-1-6 Magnetic properties of Co nanowire 92 4-2 Co2+ 在 CoCl2-OMIC 熔鹽中的行為 94 4-2-1 Co2+ 在 CoCl2-OMIC熔鹽中的配位型態 94 4-2-2 Co2+ 在 CoCl2-OMIC熔鹽中的電化學行為 95 4-2-3 Co2+ 在 CoCl2-OMIC熔鹽中還原成 Co 的成核反應 98 4-2-4 Co2+ 在 CoCl2-OMIC熔鹽中不同條件下電沉積的結果 101 4-2-5 EDS、TEM 分析 128 第五章 結論 130 參考文獻 131

    1. Wilkes and J.S., Green Chemistry, 2002, 4, 73-80.
    2. A. S. Kenneth R. Seddon, and María-José Torres, Pure Appl. Chem., 2000, 72, 2275–2287.
    3. S. Hayashi and Hamaguchi, Chemistry Letters, 2004, 33, 1590-1591.
    4. C. Yang, Science, 2001, 293, 1289-1292.
    5. H. W. Rongfang Wang, Bangxing Wei, Wei Wanga, Ziqiang Lei, Journal of Hydrogen Energy, 2010, 35, 10081-10086.
    6. H. L. X. Deli Wang, Yingchao Yu, Hongsen Wang, Eric Rus, David A. Muller, and H. D. Abruna, J. AM. CHEM. SOC., 2010, 132, 17664-17666.
    7. C. A. B. V. R. Almeida, R. R. Panepucci and M. Lipson, Nature, 2004, 431, 1081-1084.
    8. A. Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, Journal of hazardous materials, 2011, 189, 278-285.
    9. J. H. Yingke Zhou, Chengmin Shen, Hulin Li, Materials Science and Engineering, 2002, A335, 260–267.
    10. X. Z. Anming Hu, Ken D. Oakes, Peng Peng, Y. Norman Zhou, Mark R. Servos, Journal of hazardous materials, 2011, 189, 278–285.
    11. J. B. C. and U. J. Gibson, APPLIED PHYSICS LETTERS, 2005, 87, 133108.
    12. N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuzer and Z. Ozturk, Nanoscale research letters, 2010, 5, 1137-1143.
    13. E. P. Lifeng Liu, Roland Scholz, and Ulrich Go¨ sele, Nano Lett., 2009, 9.
    14. Y. Tang, Y. Chen, P. Zhou, Y. Zhou, L. Lu, J. Bao and T. Lu, Journal of Solid State Electrochemistry, 2010, 14, 2077-2082.
    15. S. N. Kazuhiro Fukami, Haruka Yamasaki, Toshio Tada, Kentaro Sonoda, and N. T. Naoya Kamikawa, Hidetsugu Sakaguchi, and Yoshihiro Nakato, J. Phys. Chem. C, 2007, 111, 1150-1160.
    16. C.-Z. Y. Gao-Ren Li, Xi-Hong Lu, Fu-Lin Zheng, Zhan-Ping Feng, and C.-Y. S. Xiao-Lan Yu, and Ye-Xiang Tong, Chem. Mater., 2008, 20, 3306–3314.
    17. K. Hoshino and Y. Hitsuoka, Electrochemistry Communications, 2005, 7, 821-828.
    18. C.-C. Hu, K.-H. Chang, C.-M. Huang and J.-M. Li, Journal of The Electrochemical Society, 2009, 156, D485.
    19. Y. T. Hsieh, T. I. Leong, C. C. Huang, C. S. Yeh and I. W. Sun, Chem Commun (Camb), 2010, 46, 484-486.
    20. A. J. B. and L. R. Faulkner, Electrochemical Methode:Fundamentals and Applications(2nd ed.), 2001.
    21. R. P. R. Greef, L. M. Peter, D. Pletcher and J. Robinson, Instrumental Methods in Electrochemistry, 1985.
    22. D. Pletcher, A First Course in Electrode Processes, 1991.
    23. G. H. G. Gunawardena, I. Montenegro and B. Scharifker, Journal of Electroanalytical Chemistry, 1982, 138, 225-239.
    24. P. A. and E. Souteyrand, Journal of Electroanalytical Chemistry, 1990, 286, 217-237.
    25. R. O. B., Y. M. V. and G. Trejo, J. Electrochem. Soc., 1998, 145, 4090-4097.
    26. G. A., G. I., and T. G, Journal of Applied Electrochemistry, 1996, 26, 1287-1294.
    27. Y. F. L. and I. W. Sun, Journal of The Electrochemical Society, 1999, 146, 1054-1059.
    28. C. L. H. and X. Xu, J. Electrochem. Soc., 1991, 138, 1886-1890.
    29. M. Avrami, J. Chem. Phys., 1939, 7, 1103-1112.
    30. B. S. and G. Hills, Electrochimica Acta, 1983, 28, 879-889.
    31. J. A. L. J. S. Wilkes, R. A. Wilson and C. L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
    32. J. R. Sanders, The University of Mississippi, 1987.
    33. J.-F. H. Shu-I Hsiu, I-Wen Sun, Cheng-Hui Yuan and Jantaie Shiea, Electrochimica Acta 2002, 47, 4367-4372.
    34. S. Schaltin, P. Nockemann, B. Thijs, K. Binnemans and J. Fransaer, Electrochemical and Solid-State Letters, 2007, 10, D104.
    35. J.-M. Yang, S.-P. Gou and I. W. Sun, Chemical Communications, 2010, 46, 2686.
    36. S. S. Belevskii, N. I. Tsyntsaru and A. I. Dikusar, Surface Engineering and Applied Electrochemistry, 2010, 46, 91-99.
    37. S. S. ABD, EL REHIM and S. O. M. M.A.M. IBRAHIM, Journal of Applied Electrochemistry, 2003, 33, 627-633.
    38. H. Shi and X. He, Journal of Physics and Chemistry of Solids, 2012, 73, 646-650.

    下載圖示 校內:2017-08-07公開
    校外:2017-08-07公開
    QR CODE