| 研究生: |
賴弘岳 Lai, Hong-Yue |
|---|---|
| 論文名稱: |
CEBPD在極化後巨噬細胞中的功能探討及其對粥狀動脈硬化的進程影響 Investigate the function and consequent effects of CEBPD in polarized macrophages and pathogenesis of atherosclerosis |
| 指導教授: |
王育民
Wang, Ju-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | CEBPD 、發炎 、巨噬細胞 、PTX3 、ZNF202 、ABCA1 、statins |
| 外文關鍵詞: | CEBPD, inflammation, macrophages, PTX3, ZNF202, ABCA1, statins |
| 相關次數: | 點閱:105 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動脈粥樣硬化是由高血脂症所引起的一種發炎性疾病,也有證據顯示發炎和脂質代謝平衡是密切相關的。巨噬細胞除了調節免疫反應外,也能參與脂質代謝平衡,並在動脈粥樣硬化的進程中扮演關鍵性的角色。然而巨噬細胞是否參與在高血脂所誘導的發炎性疾病,像是動脈粥樣硬化當中,需要進一步的釐清與研究。過去幾年來,我們的研究團隊已成功證實轉錄因子CCAAT/enhancer-binding protein delta (CEBPD)在巨噬細胞發炎及癌症微環境中扮演重要角色。因此,本篇論文主要目的即剖析CEBPD是否參與調控巨噬細胞發炎與脂質代謝平衡,進而影響動脈粥樣硬化的進程。免疫螢光染色結果顯示在人類和小鼠動脈粥樣硬化斑塊中,CEBPD蛋白和巨噬細胞有共位現象,此外,骨髓移植實驗結果顯示接受Cebpd缺陷骨髓細胞的動脈粥樣硬化模式小鼠,在餵食高脂食物後也較不會有動脈粥樣硬化斑塊的形成。細胞實驗結果顯示p38MAPK/CREB這條訊息傳遞路徑能幫助脂質所誘導的CEBPD活化,並促進脂質堆積在M1巨噬細胞而不是在M2巨噬細胞。其調控機制包括PTX3所促進的脂質內吞作用增多及ABCA1所促進的脂質外排作用減少。我們也發現ZNF202能參與調控CEBPD所抑制的ABCA1基因轉錄作用。此外,我們也發現降血脂藥物simvastatin能透過p38MAPK/CREB這條訊息傳遞路徑來抑制CEBPD的活化,進而減少脂質在M1巨噬細胞的堆積。本篇論文強調發炎與脂質代謝平衡交互作用的重要性,並提供靶向巨噬細胞表型來治療心血管疾病的新見解。
Atherosclerosis is an inflammatory disease driven by hyperlipidemia. There are accumulating evidences to support that inflammation and lipid homeostasis are closely linked. Macrophages mediate innate immune responses and lipid homeostasis and act as a key player in atherosclerosis. However, the cross talk among these processes in the development and progression of atherosclerosis are not fully defined. For the past few years, our recent studies successfully demonstrated the important role of the transcription factor CCAAT/enhancer-binding protein delta (CEBPD) in inflammation and cancer microenvironment over macrophages. In this current study, we aimed to dissect whether CEBPD functions at the junction of inflammation and macrophage lipid homeostasis. We found that CEBPD colocalized with macrophages in human and mouse atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. In response to modified LDL, the p38MAPK/CREB pathway contributed to CEBPD activation which promoted lipid accumulation in M1 macrophages but not in M2 macrophages. The underlying mechanisms involved in this process included an increase in pentraxin 3 (PTX3)-mediated macropinocytosis of LDL and a reduction in ATP-binding cassette subfamily A member 1 (ABCA1)-mediated cholesterol efflux. Also, we found that ZNF202 mediates CEBPD-repressed ABCA1 gene transcription. In addition, we found that simvastatin (a HMG-CoA reductase inhibitor) can target CEBPD to block lipid accumulation in M1 macrophages. In conclusion, this study underscores the importance of cross talk between inflammation and lipid homeostasis and provides new insight into targeting macrophage phenotypes and functions in cardiovascular diseases.
1. Hansson, G.K. and A. Hermansson, The immune system in atherosclerosis. Nat Immunol, 2011. 12(3): p. 204-12.
2. Lusis, A.J., Atherosclerosis. Nature, 2000. 407(6801): p. 233-41.
3. Spann, N.J., et al., Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell, 2012. 151(1): p. 138-52.
4. Gao, J., et al., Involvement of endoplasmic stress protein C/EBP homologous protein in arteriosclerosis acceleration with augmented biological stress responses. Circulation, 2011. 124(7): p. 830-9.
5. Tuomisto, T.T., et al., Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc Res, 2008. 78(1): p. 175-84.
6. Bhargava, P. and C.H. Lee, Role and function of macrophages in the metabolic syndrome. Biochem J, 2012. 442(2): p. 253-62.
7. Miller, Y.I., et al., Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res, 2011. 108(2): p. 235-48.
8. Moore, K.J., F.J. Sheedy, and E.A. Fisher, Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol, 2013. 13(10): p. 709-21.
9. Steinbrecher, U.P. and M. Lougheed, Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima. Arterioscler Thromb, 1992. 12(5): p. 608-25.
10. Manning-Tobin, J.J., et al., Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol, 2009. 29(1): p. 19-26.
11. Hoppe, G., J. O'Neil, and H.F. Hoff, Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages. J Clin Invest, 1994. 94(4): p. 1506-12.
12. Lougheed, M., H.F. Zhang, and U.P. Steinbrecher, Oxidized low density lipoprotein is resistant to cathepsins and accumulates within macrophages. J Biol Chem, 1991. 266(22): p. 14519-25.
13. Roma, P., et al., Oxidized LDL increase free cholesterol and fail to stimulate cholesterol esterification in murine macrophages. Biochem Biophys Res Commun, 1990. 171(1): p. 123-31.
14. Buono, C., et al., Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest, 2009. 119(5): p. 1373-81.
15. Kruth, H.S., Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr Opin Lipidol, 2011. 22(5): p. 386-93.
16. Anzinger, J.J., et al., Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis. Arterioscler Thromb Vasc Biol, 2010. 30(10): p. 2022-31.
17. Kruth, H.S., et al., Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem, 2005. 280(3): p. 2352-60.
18. Anzinger, J.J., et al., Murine bone marrow-derived macrophages differentiated with GM-CSF become foam cells by PI3Kgamma-dependent fluid-phase pinocytosis of native LDL. J Lipid Res, 2012. 53(1): p. 34-42.
19. Yao, W., K. Li, and K. Liao, Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai), 2009. 41(9): p. 773-80.
20. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
21. Nau, G.J., et al., Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A, 2002. 99(3): p. 1503-8.
22. Calkhoven, C.F. and G. Ab, Multiple steps in the regulation of transcription-factor level and activity. Biochem J, 1996. 317 ( Pt 2): p. 329-42.
23. Tsukada, J., et al., The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine, 2011. 54(1): p. 6-19.
24. Williamson, E.A., et al., Identification of transcriptional activation and repression domains in human CCAAT/enhancer-binding protein epsilon. J Biol Chem, 1998. 273(24): p. 14796-804.
25. Lekstrom-Himes, J. and K.G. Xanthopoulos, Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem, 1998. 273(44): p. 28545-8.
26. Nishioka, K., et al., Enhanced expression and DNA binding activity of two CCAAT/enhancer-binding protein isoforms, C/EBPbeta and C/EBPdelta, in rheumatoid synovium. Arthritis Rheum, 2000. 43(7): p. 1591-6.
27. Tsatsanis, C., et al., Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol, 2006. 38(10): p. 1654-61.
28. Lu, Y.C., et al., Differential role for c-Rel and C/EBPbeta/delta in TLR-mediated induction of proinflammatory cytokines. J Immunol, 2009. 182(11): p. 7212-21.
29. Litvak, V., et al., Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol, 2009. 10(4): p. 437-43.
30. Takata, Y., et al., Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res, 2002. 91(5): p. 427-33.
31. Li, R., et al., CCAAT/enhancer binding protein delta (C/EBPdelta) expression and elevation in Alzheimer's disease. Neurobiol Aging, 2004. 25(8): p. 991-9.
32. Ko, C.Y., et al., CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer's disease. Neurobiol Aging, 2015. 36(3): p. 1356-68.
33. Chang, L.H., et al., Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice. PLoS One, 2012. 7(9): p. e45378.
34. Gao, H., et al., Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol, 2006. 20(6): p. 1287-99.
35. Magrini, E., A. Mantovani, and C. Garlanda, The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol Med, 2016. 22(6): p. 497-510.
36. Ortega-Hernandez, O.D., et al., The long pentraxin 3 and its role in autoimmunity. Semin Arthritis Rheum, 2009. 39(1): p. 38-54.
37. Altmeyer, A., et al., Promoter structure and transcriptional activation of the murine TSG-14 gene encoding a tumor necrosis factor/interleukin-1-inducible pentraxin protein. J Biol Chem, 1995. 270(43): p. 25584-90.
38. Basile, A., et al., Characterization of the promoter for the human long pentraxin PTX3. Role of NF-kappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem, 1997. 272(13): p. 8172-8.
39. Castelo-Branco, G., et al., Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A, 2003. 100(22): p. 12747-52.
40. Liu, W., et al., Pentraxin 3 promotes oxLDL uptake and inhibits cholesterol efflux from macrophage-derived foam cells. Exp Mol Pathol, 2014. 96(3): p. 292-9.
41. Hsiao, Y.W., et al., CCAAT/enhancer binding protein delta in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Sci Signal, 2013. 6(284): p. ra59.
42. Chi, J.Y., et al., Targeting chemotherapy-induced PTX3 in tumor stroma to prevent the progression of drug-resistant cancers. Oncotarget, 2015. 6(27): p. 23987-4001.
43. Ko, C.Y., et al., CCAAT/enhancer binding protein delta (CEBPD) elevating PTX3 expression inhibits macrophage-mediated phagocytosis of dying neuron cells. Neurobiol Aging, 2012. 33(2): p. 422.e11-25.
44. Peri, G., et al., PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation, 2000. 102(6): p. 636-41.
45. Latini, R., et al., Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2004. 110(16): p. 2349-54.
46. Rolph, M.S., et al., Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arterioscler Thromb Vasc Biol, 2002. 22(5): p. e10-4.
47. Savchenko, A., et al., Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions. J Pathol, 2008. 215(1): p. 48-55.
48. Jylhava, J., et al., Pentraxin 3 (PTX3) is associated with cardiovascular risk factors: the Health 2000 Survey. Clin Exp Immunol, 2011. 164(2): p. 211-7.
49. Knoflach, M., et al., Pentraxin-3 as a marker of advanced atherosclerosis results from the Bruneck, ARMY and ARFY Studies. PLoS One, 2012. 7(2): p. e31474.
50. Garlanda, C., et al., Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol, 2005. 23: p. 337-66.
51. Diniz, S.N., et al., PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages. J Leukoc Biol, 2004. 75(4): p. 649-56.
52. Garlanda, C., et al., Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002. 420(6912): p. 182-6.
53. Moalli, F., et al., Pathogen recognition by the long pentraxin PTX3. J Biomed Biotechnol, 2011. 2011: p. 830421.
54. Ohashi, R., et al., Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Qjm, 2005. 98(12): p. 845-56.
55. Wang, X., et al., Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest, 2007. 117(8): p. 2216-24.
56. Yvan-Charvet, L., et al., Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest, 2007. 117(12): p. 3900-8.
57. Bi, X., C. Vitali, and M. Cuchel, ABCA1 and Inflammation: From Animal Models to Humans. Arterioscler Thromb Vasc Biol, 2015. 35(7): p. 1551-3.
58. Westerterp, M., et al., ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res, 2014. 114(1): p. 157-70.
59. Zhu, X., et al., Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res, 2010. 51(11): p. 3196-206.
60. Yvan-Charvet, L., et al., Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation, 2008. 118(18): p. 1837-47.
61. Tang, C., et al., The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem, 2009. 284(47): p. 32336-43.
62. Marz, W. and H. Wieland, HMG-CoA reductase inhibition: anti-inflammatory effects beyond lipid lowering? Herz, 2000. 25(2): p. 117-25.
63. Liu, P.Y., et al., Evidence for statin pleiotropy in humans: differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation, 2009. 119(1): p. 131-8.
64. Wang, C.Y., P.Y. Liu, and J.K. Liao, Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med, 2008. 14(1): p. 37-44.
65. Dichtl, W., et al., HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2003. 23(1): p. 58-63.
66. Lu, K.Y., et al., Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha. Circulation, 2010. 121(16): p. 1828-37.
67. Moore, K.J. and M.W. Freeman, Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol, 2006. 26(8): p. 1702-11.
68. Cavelier, C., et al., Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1. Biochim Biophys Acta, 2006. 1761(7): p. 655-66.
69. Yeh, W.C., et al., Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev, 1995. 9(2): p. 168-81.
70. Lai, P.H., et al., HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta, 2008. 1783(10): p. 1803-14.
71. Wang, J.M., J.T. Tseng, and W.C. Chang, Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell, 2005. 16(7): p. 3365-76.
72. Senokuchi, T., et al., Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J Biol Chem, 2005. 280(8): p. 6627-33.
73. Nam, D., et al., Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol, 2009. 297(4): p. H1535-43.
74. Korshunov, V.A. and B.C. Berk, Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol, 2003. 23(12): p. 2185-91.
75. Sterneck, E., et al., Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc Natl Acad Sci U S A, 1998. 95(18): p. 10908-13.
76. Ding, L., et al., Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice. Cell Metab, 2012. 15(6): p. 861-72.
77. Sankaranarayanan, S., et al., A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res, 2011. 52(12): p. 2332-40.
78. Cheng, P.H., et al., Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein. Brain Struct Funct, 2013. 218(1): p. 283-94.
79. Sterneck, E., L. Tessarollo, and P.F. Johnson, An essential role for C/EBPbeta in female reproduction. Genes Dev, 1997. 11(17): p. 2153-62.
80. Zhang, T., et al., Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility. Reproduction, 2014. 147(2): p. 141-51.
81. Ko, C.Y., W.C. Chang, and J.M. Wang, Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci, 2015. 22: p. 6.
82. Butcher, M.J. and E.V. Galkina, Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol, 2012. 3: p. 44.
83. Canton, J., D. Neculai, and S. Grinstein, Scavenger receptors in homeostasis and immunity. Nat Rev Immunol, 2013. 13(9): p. 621-34.
84. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006. 42(6): p. 717-27.
85. Nagao, K., et al., Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta, 2013. 1831(2): p. 398-406.
86. Langmann, T., et al., ZNF202 is inversely regulated with its target genes ABCA1 and apoE during macrophage differentiation and foam cell formation. J Lipid Res, 2003. 44(5): p. 968-77.
87. McNagny, K.M., et al., Regulation of eosinophil‐specific gene expression by a C/EBP–Ets complex and GATA‐1. The EMBO Journal, 1998. 17(13): p. 3669-3680.
88. Kolyada, A.Y. and N.E. Madias, Transcriptional regulation of the human iNOS gene by IL-1beta in endothelial cells. Mol Med, 2001. 7(5): p. 329-43.
89. Ruffell, D., et al., A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A, 2009. 106(41): p. 17475-80.
90. Gordon, S. and F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity, 2010. 32(5): p. 593-604.
91. Kim, C., et al., Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc Natl Acad Sci U S A, 2008. 105(16): p. 6150-5.
92. Ananieva, O., et al., The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat Immunol, 2008. 9(9): p. 1028-36.
93. Ko, C.Y., et al., Glycogen synthase kinase-3beta-mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol Aging, 2014. 35(1): p. 24-34.
94. Swanson, J.A., Phorbol esters stimulate macropinocytosis and solute flow through macrophages. J Cell Sci, 1989. 94 ( Pt 1): p. 135-42.
95. Norbury, C.C., et al., Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity, 1995. 3(6): p. 783-91.
96. Sallusto, F., et al., Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med, 1995. 182(2): p. 389-400.
97. Falcone, S., et al., Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci, 2006. 119(Pt 22): p. 4758-69.
98. Dharmawardhane, S., et al., Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell, 2000. 11(10): p. 3341-52.
99. West, M.A., et al., Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol, 2000. 10(14): p. 839-48.
100. Chorny, A., et al., The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J Exp Med, 2016. 213(10): p. 2167-85.
101. Ueyama, T., et al., Isoform-specific membrane targeting mechanism of Rac during Fc gamma R-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol, 2005. 175(4): p. 2381-90.
102. Kant, A.M., et al., SHP-1 regulates Fcgamma receptor-mediated phagocytosis and the activation of RAC. Blood, 2002. 100(5): p. 1852-9.
103. Yeo, J.C., et al., Rab31 and APPL2 enhance FcgammaR-mediated phagocytosis through PI3K/Akt signaling in macrophages. Mol Biol Cell, 2015. 26(5): p. 952-65.
104. Ai, J., et al., The inositol phosphatase SHIP-2 down-regulates FcgammaR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood, 2006. 107(2): p. 813-20.
105. Rader, D.J. and A.R. Tall, The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat Med, 2012. 18(9): p. 1344-6.
106. Khera, A.V., et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med, 2011. 364(2): p. 127-35.
107. Rader, D.J., et al., The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res, 2009. 50 Suppl: p. S189-94.
108. Marquart, T.J., et al., miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12228-32.
109. Bjorkhem-Bergman, L., J.D. Lindh, and P. Bergman, What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol, 2011. 72(1): p. 164-5.