簡易檢索 / 詳目顯示

研究生: 黃凱亮
Huang, Kai-Liang
論文名稱: Cu2(Fe1-xCox)SnS4及Cu2MnSnS4液相合成及可調控能隙研究
Solution-phase synthesis and tunable bandgaps of Cu2(Fe1-xCox)SnS4 and Cu2MnSnS4
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: Cu2(Fe1-xCox)SnS4奈米晶Cu2MnSnS4熱注入法單一反應容器能隙調控
外文關鍵詞: Cu2(Fe1-xCox)SnS4, Cu2MnSnS4, hot-injection synthesis, one-pot system synthesis, tunable bandgap
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用熱注入法(hot-injection)在溫度260℃下持溫30分鐘合成Cu2(Fe1-xCox)SnS4(x=0、0.2、0.4、0.6、0.8、1)奈米晶,探討其能隙隨著Co/Fe組成變化情形。Cu2(Fe1-xCox)SnS4奈米晶直接能隙隨著Co含量增加由1.46 eV降低至1.30 eV,近似線性遞減,顯示Cu2(Fe1-xCox)SnS4奈米晶適合應用於光伏元件當中吸收層材料。
    此外,以熱注入法於270℃下持溫0.5小時及以單一反應器(one-pot)法於270℃下持溫48-96小時合成Cu2MnSnS4 (CMTS)。熱注入法合成之主要產物推測為介於orthorhombic Cu3SnS4 (CTS)及tetragonal CMTS之中間相(intermediate phase),持溫48小時之合成產物為中間相及CMTS,將反應時間增至96小時,可得tetragonal CMTS純相。tetragonal CMTS相能隙為1.62-1.66 eV。

    The tunable bandgap of Cu2(Fe1-xCox)SnS4 nanocrystals synthesized at 260℃ for 30 min by the hot-injection method was explored as a function of the Co concentration. The direct bandgaps of Cu2(Fe1-xCox)SnS4 nanocrystals can be tuned in the range of 1.30-1.46 eV, which decrease almost linearly with the Co concentration, showing that Cu2(Fe1-xCox)SnS4 nanocrystals may be well suited for application as the absorption layer in thermoelectric and photovoltaic devices.
    Cu2MnSnS4 (CMTS) was synthesized at 270℃ for 0.5 h by the hot-injection method and at 270℃ for 48-96 h in a one-pot system respectively. The major phase in the samples synthesized by the hot-injection method was possibly an intermediate phase of orthorhombic Cu3SnS4 (CTS) and tetragonal CMTS. For the one-pot method, the intermediate phase and CMTS were formed in the samples synthesized at 270℃ for 48 h, while prolonging the synthesis time to 96 h produced single CMTS phase in the samples. The bandgap of tetragonal CMTS is about 1.62-1.66 eV.

    摘要 III Extended Abstract IV 致謝 XI 目錄 XII 圖目錄 XIV 表目錄 XVI 第一章 引言 1 第二章 基礎光電原理及文獻回顧 4 2.1 光電原理簡介 4 2.1.1 光伏效應(Photovoltaic Effect) 4 2.1.2 光傳導效應 4 2.2 太陽能材料介紹及分類 5 2.2.1 太陽能材料物理特性 5 2.2.2 太陽能電池分類 5 2.3 可調控能隙材料文獻回顧 8 2.3.1 藉由控制尺寸調控能隙 9 2.3.2 藉由改變元素組成調控能隙 10 2.3.3 Cu2-II-SnS4化合物合成及性質(II=Fe、Co、Ni、Mn) 12 2.3.3.1 CFTS合成及性質 13 2.3.3.2 CCTS合成及性質 15 2.3.3.3 CNTS合成及性質 17 2.3.3.4 CMTS合成及性質 17 2.3.4.5 Cu2(Zn,Fe)SnS4 18 2.4 研究動機 19 第三章 實驗步驟與分析 22 3.1 熱注入法(Hot Injection)合成Cu2(Fe1-xCox)SnS4奈米晶 22 3.2熱注入法(hot injection)合成Cu2MnSnS4 23 3.3單一反應器系統(one pot system)合成Cu2MnSnS4 24 3.4 材料特性分析 25 3.4.1 X光繞射儀 25 3.4.2 掃描式電子顯微鏡 26 3.4.3 穿透式電子顯微鏡 27 3.4.4 X光能量散佈分析儀 28 3.4.5 紫外/可見光(UV-vis)光譜儀 29 3.4.6拉曼光譜儀 30 3.4.7化學分析電子光譜儀 31 第四章 結果與討論 33 4.1 Cu2(Fe1-xCox)SnS4奈米晶 33 4.1.1熱注入法合成Cu2(Fe1-xCox)SnS4 (CFCTS)奈米晶 33 4.1.2 Cu2(Fe1-xCox)SnS4奈米晶之結構形貌及化學組成 34 4.1.3 Cu2(Fe1-xCox)SnS4奈米晶光學性質 35 4.2 Cu2MnSnS4 (CMTS) 37 4.2.1熱注入法 37 4.2.2 單一反應器法 37 4.2.3 Cu2MnSnS4結構形貌及化學組成 38 4.2.4 Cu2MnSnS4光學性質 38 第五章 結論 40 參考文獻 41 附錄 80 JCPDS Cards No. 00-044-1476 (Cu2FeSnS4) 80 JCPDS Cards No. 00-026-0513 (Cu2CoSnS4) 81 JCPDS Cards No. 00-036-0217 (Cu3SnS4) 82 JCPDS Cards No. 01-071-5261 (Cu2MnSnS4) 83

    [1] 賴麗蓉, "京都議定書之分析及未來發展勢", 能源季刊, vol. 28, 1998.
    [2] 馮垛生等人, "太陽能發電原理與應用", 五南圖書出版公司, 2009.
    [3] 郭浩中等人, "太陽能光電技術", 五南圖書出版公司, 2012.
    [4] R. T. Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, C. L. Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell", C. R. Chimie, vol. 9, pp. 717-729, 2006.
    [5] 吳財福等人, "太陽光電能供電與照明系統", 全華科技圖書股份公司, 2007.
    [6] A. Kay, M. Gratzel, "Artificial Photosynthesis. 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins", J. Phys. Chem., vol. 97, pp. 6272-6277, 1993.
    [7] J. N. Clifford, E. Palomares, Md. K. Nazeeruddin, R. Thampi, M. Gratzel, J. R. Durrant, "Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films", J. am. Chem. Soc., vol. 126, pp. 5670-5671, 2004.
    [8] M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, "Multi-junction III-V solar cells: current status and future potential", Sol. Energy, vol. 79, pp. 78-85, 2005.
    [9] S. H. Wei, S. B. Zhang, A. Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties", Appl. Phys. Lett., vol. 72, pp. 3199-3201, 1998.
    [10] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%", Prog. Photovoltaics, vol. 19, pp. 894-897, 2011.
    [11] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, "Development of CZTS-based thin film solar cells", Thin Solid Films, vol. 517, pp. 2455-2460, 2009.
    [12] T. K. Todorov, K. B. Reuter, D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber", Adv. Mater., vol. 22, pp. E156-E159, 2010.
    [13] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, "Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals", J. Am. Chem. Soc., vol. 132, pp. 17384-17386, 2010.
    [14] K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, S. Guha, "Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells", Appl. Phys. Lett., vol. 98, pp. 051912-1-3, 2011.
    [15] J. B. Li, V. Chawla, B. M. Clemens, "Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy", Adv. Mater., vol. 24, pp. 720-723, 2012.
    [16] C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su, Y. Xie, "Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties", Mater. Horiz., vol. 1, pp. 81-86, 2014.
    [17] E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh, A. S. Mohamed, "Synthesized and characterization of Cu2ZnSnS4 (CZTS) thin films deposited by electrodeposition method", Appl. Mech. Mater., vol. 343, pp.85-89, 2013.
    [18] A. D. Vos, "Detailed balance limit of the efficiency of tandem solar cells", J. Phys. D: Appl. Phys., vol. 13, pp. 839-846, 1980.
    [19] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, W. F. Hsieh, "Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method", Chem. Phys. Lett., vol. 409, pp. 208-211, 2005.
    [20] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, S. K. Tripathi, " Preparation and Characterization of SnSe Nanocrystalline Thin Films", J. Optoelectron. Adv. M., vol. 7, pp. 2085-2094, 2005.
    [21] A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris, E. S. Aydil, "Size control and quantum confinement in Cu2ZnSnS4 nanocrystals", Chem. Commun., vol. 47, pp. 11721-11723, 2011.
    [22] G. M. Ford, Q. Guo, R. Agrawal, H. W. Hillhouse, "Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cell: 6.8% Efficient Device Fabrication", Chem. Mater., vol. 23, pp. 2626-2629, 2011.
    [23] S. C. Riha, B. A. Parkinson, A. L. Prieto, "Compositionally Tunable Cu2ZnSn(S1-xSex)4 Nanocrystals: Probing the effect of Se-Inclusion in Mixed Chalcogenide Thin Films", J. Am. Chem. Soc., vol. 133, pp. 15272-15275, 2011.
    [24] M. Pilvet, M. Kauk-Kuusik, M. Altosaar, M. Grossberg, M. Danilson, K. Timmo, A. Mere, V. Mikli, "Compositionally tunable structure and optical properties of Cu1.85(CdxZn1-x)1.1SnS4.1 (0x<1) monograin powders", Thin Solid Films, vol. 582, pp. 180-183, 2015.
    [25] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics", J. Am. Chem. Soc., vol. 130, pp. 16770-16777, 2008.
    [26] C. Huang, Y. Chan, F. Liu, D. Tang, J. Yang, Y. Lai, J. Li, Y. Liu, "Synthesis and characterization of multicomponent Cu2(FexZn1-x)SnS4 nanocrystals with tunable band gap and structure", J. Mater. Chem. A, vol. 1, pp. 5402-5407, 2013.
    [27] D. B. Khadka, J. H. Kim, "Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application", J. Phys. Chem. C, vol. 118, pp. 14227-14237, 2014.
    [28] Y. Cui, R. Deng, G. Wang, D. Pan, "A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M=Co2+, Fe2+, Ni2+, Mn2+) nanocrystals", J. Mater. Chem., vol. 22, pp. 23136-23140, 2012.
    [29] C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, "Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals", Chem. Commun., vol. 48, pp. 2603-2605, 2012.
    [30] W. Wang, H. Shen, H. Yao, J. Li, "Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation", Mater. Lett., vol. 125, pp. 183-186, 2014.
    [31] X. Jiang, W. Xu, R. Tan, W. Song, J. Chen, "Solvothermal synthesis of highly crytallized quaternary chalcogenide Cu2FeSnS4 particles", Mater. Lett., vol. 102-103, pp.39-42, 2013.
    [32] X. Zhang, N. Bao, K. Ramasamy, Y. A. Wang, Y. Wang, B. Lin and A. Gupta, "Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV", Chem. Commun.,vol. 48, pp. 4956-4958, 2012.
    [33] L. Li, X. Liu, J. Huang, M. Cao, S. Chen, Y. Shen, L. Wang, "Solution-based synthesis and characterization of Cu2FeSnS4 nanocrystals", Mater. Chem. Phys., vol. 133, pp. 688-691, 2012.
    [34] K. Mokurala, P. Bhargava, S. Mallick, "Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors", Mater. Chem. Phys., vol. 147, pp. 371-374, 2014.
    [35] H. Guan, H. Shen, B. Jiao, X. Wang, "Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method", Mat. Sci. Semicon. Proc., vol. 25, pp. 159-162, 2014.
    [36] M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, Y. Shen, "PVP assisted solvothermal synthesis of uniform Cu2FeSnS4 nanospheres", J. Alloy. Compd., vol. 622, pp. 695-702, 2015.
    [37] J. Zhou, Z. Ye, Y. Wang,Q. Yi, J. Wen, "Solar cell material Cu2FeSnS4 nanoparticles synthesized via a facile liquid reflux method", Mater. Lett., vol. 140, pp.119-122, 2015.
    [38] X. Fontane, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V. O. Yukhymchuk, M. Ya. Valakh, A. Perez-Rodriguez, J. R. Morante, "Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4", J. Alloy. Compd., vol. 539, pp. 190-194, 2012.
    [39] C. Rincon, M. Quintero, E. Moreno, Ch. Power, E. Quintero, J. A. Henao, M. A. Macias, G. E. Delgado, R. Tovar, M. Morocoima, "X-ray diffraction, Raman spectrum and magnetic susceptibility of the magnetic semiconductor Cu2FeSnS4", Solid State Commun., vol. 151, pp. 947-951, 2011.
    [40] R. R. Prabhakar, N. H. Loc, M. H. Kumar, P. P. Boix, S. Juan, R. A. John, S. K. Batabyal, L. H. Wong, "Facile Water-based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells", ACS Appl. Mater. Inter., vol. 6, pp. 17661-17667, 2014.
    [41] L. Ai, J. Jiang, "Hierarchical porous quaternary Cu-Fe-Sn-S hollow chain microspheres: rapid microwave nonaqueous synthesis, growth mechanism, and their efficient removal of organic dye pollutant in water", J. Mater. Chem., vol. 22, pp. 20586-20592, 2012.
    [42] J. Y. Park, J. H. Noh, T. N. Mandal, S. H. Im, Y. Jun, S. Seok, "Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts", RSC Adv., vol. 3, pp. 24918-24921, 2013.
    [43] L. Shi, Y. Li, "Preparation and photoelectric property of a Cu2FeSnS4 nanowire array", RSC adv., vol. 4, pp. 43720-43724, 2014.
    [44] L. Ai, J. Jiang, "Self-sacrificial templating synthesis of porous quaternary Cu-Fe-Sn-S semiconductor nanotubes via microwave irradiation", Nanotechnology, vol. 23, pp.495601-1-9, 2012.
    [45] B. Murali, S. B. Krupanidhi, "Facile synthesis of Cu2CoSnS4 nanoparticles exhibiting red-edge-effect: Application in hybrid photonic devices", J. Appl. Phys., vol. 114, pp. 144312-1-9, 2013.
    [46] B. Murali, M. Madhuri, S. B. Krupanidhi, "Solution Processed Cu2CoSnS4 Thin Films for Photovoltaic Applications", Cryst. Growth Des., vol. 14, pp. 3685-3691, 2014.
    [47] L. Shi, Y. Li, H. Zhu, Q. Li, "Well-Aligned Quaternary Cu2CoSnS4 Single- Crystalline Nanowires as a Potential Low-Cost Solar Cell Material", Chem. Plus Chem., vol. 79, pp. 1638-1642, 2014.
    [48] X. Zhang, N. Bao, B. Lin, A. Gupta, "Colloidal synthesis of wurtzite Cu2CoSnS4 nanocrystals and photoresponse of spray-deposited thin films", Nanotechnology, vol. 24, pp. 105706-1-8, 2013.
    [49] O. Zaberca, A. Gillorin, B. Durand, J. Y. Chane-Ching, "A general route to the synthesis of surfactant-free, solvent-dispersible ternary and quaternary chalcogenide nanocrystals", J. Mater. Chem., vol. 21, pp. 6483-6486, 2011.
    [50] A. Gillorin, A. Balocchi, X. Marie, P. Dufour, J. Y. Chane-Ching, "Synthesis and Optical Properties of Cu2CoSnS4 Colloidal Quantum Dots", J. Mater. Chem., vol. 21, pp. 5615-5619, 2011.
    [51] J. Y. Chane-Ching, A. Gillorin, O. Zaberca, A. Balocchi, X. Marie, "Highly-crystallized quaternary chalcopyrite nanocrystals via a high-temperature dissolution-reprecipitation route, Chem. Commun., vol. 47, pp. 5229-5231, 2011.
    [52] M. Benchikri, O. Zaberca, R. El Ouatib, B. Durand, F. Oftinger, A. Balocchi, J. Y. Chane-Ching, "A high temperature route to the formation of highly pure quaternary chalcogenide particles", Mater. Lett., vol. 68, pp. 340-343, 2012.
    [53] T. X. Wang, Y. G. Li, H. R. Liu, H. Li, S. X. Chen, "Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method", Mater. Lett., vol. 124, pp. 148-150, 2014.
    [54] A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, "Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications", Mater. Lett., vol. 137, pp. 440-443, 2014.
    [55] X. Liang, P. Guo, G. Wang, R. Deng, D. Pan, X. Wei, "Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure", RSC Adv., vol. 2, pp. 5044-5046, 2012.
    [56] F. Lopez-Vergara, A. Galdamez, V. Manriquez, P. Barahona, O.Pena, "Magnetic properties and crystal structure of solid-solution Cu2MnxFe1-xSnS4 chalcogenides with stannite-type structure" Phys. Status Solidi B, vol. 5, pp. 958-964, 2014.
    [57] R. Nitsche, D. F. Sargent, P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport", J. Cryst. Growth, vol. 1, pp.52-53, 1967.
    [58] E. Parthe, K. Yvon, R. H. Deitch, "The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds", Acta Crystallogr. B, vol. 25, pp. 1164-1174, 1969.
    [59] D. M. Schleich, A. Wold, "Optical and electrical properties of quaternary chalcogenides", Mater. Res. Bull., vol. 12, pp. 111-114, 1977.
    [60] L. Guen, W. S. Glaunsinger, A. Wold, "Physical properties of the quaternary chalcogenides Cu2IBIICIVX4 (BII=Zn, Mn, Fe, Co; CIV=Si, Ge, Sn; X=S, Se)", Mater. Res. Bull., vol. 14, pp. 463-467, 1979.
    [61] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell", Prog. Photovolt: Res. Appl., vol. 20, pp. 6-11, 2012.
    [62] C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. Chen, S. Huang, "Facile synthesis of Cu2ZnSnS4 nanocrystals", Cryst. Eng. Comm., vol. 13, pp. 3310-3313, 2011.
    [63] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi, "Co-evaporated Cu2ZnSnSe4 films and devices", Sol. Energ. Mat. Sol. C, vol. 101, pp. 154-159, 2012.
    [64] S. G. Kwon, T. Hyeon, "Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods", Small, vol. 7, pp. 2685-2702, 2011.
    [65] R. E. Reed-Hill, R. Abbaschian, "Physical Metallurgy Principles", PWS Publishing Company, Boston, 1994.
    [66] 汪建民等人, "材料分析", 中國材料科學學會, 1998.
    [67] A. Hagfeldt, M. Gratzel, "Light-Induced Redox Reaction in Nanocrystlline Systems", Chem. Rev., vol. 95, pp. 49-68, 1995.
    [68] Y. Liu, W. Luo, R. Li, G. Liu, M. R. Antonio, X. Chen, "Optical Spectroscopy of Eu3+ Doped ZnO Nanocrystals", J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
    [69] Z. L. Cabana, C. M. S. Torres, G. Gonzalez, "Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites", Nanoscale Res. Lett., vol.6 pp. 523-1-8, 2011.
    [70] C. V. Raman, "A change of wave-length in light scattering", Nature, vol. 121, pp.619, 1928.
    [71] C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. Chen, S. Huang, "Facile synthesis of Cu2ZnSnS4 nanocrystals", Cryst. Eng. Comm., vol.13, pp.3310-3313, 2011.
    [72] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", Perkin-Elmer, 1992.
    [73] T. Maeda, S. Nakamura, T. Wada, "First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4", Jpn. J. Appl. Phys., vol. 50, pp. 04DP07-1-6, 2011.
    [74] M. Himmrich, H. Haeuseler, "Far infrared studies on stannite and wurtzstannite type compounds", Spectrochimica Acta, vol. 47A, pp. 933-942, 1991.
    [75] F. Di Benedetto, G. P. Bernardini, D. Borrini, W. Lottermoser, G. Tippelt, G. Amthauer, "57Fe- and 119Sn- Mossbauer study on stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution", Phys. Chem. Minerals, vol. 31, pp. 683-690, 2005.

    無法下載圖示 校內:2016-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE