| 研究生: |
邱傳維 Chiu, Chuan-wei |
|---|---|
| 論文名稱: |
助行器使用者之關節動態扭矩評估 The assessment of dynamic torques on joints for walking-aid users |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 助行器 、拉格朗日力學 、行走運動狀態量測 、關節動態扭矩評估 |
| 外文關鍵詞: | walking-aid system, Lagrangian mechanics, walking motion state measurement, assessment of dynamic torques on joints |
| 相關次數: | 點閱:163 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立一供單邊下肢受傷患者使用的助行器系統。助行器由帶有動力的底部驅動平台與攙扶握桿組合而成,配合人體上的感測裝置,可在使用者自由行走的情況下,即時記錄使用者之行走運動狀態資訊。經由動力學分析將運動狀態資訊評估成使用者關節動態扭矩。在人體狀態資訊方面,以七組陀螺儀配合微分估測器得出人體主要部位之關節角度、角速度、角加速度。以力敏電阻量測腳底正向力,並搭配等效面積的概念,以簡化腳底受力模型。為不影響使用者行動,用無線雙藍牙主機無線傳輸感測器數據,解決單一主機連線數量不足問題。在動力學分析方面,以拉格朗日力學對系統進行分析。整體程序包含感測器量測、數據傳輸、動力方程式計算皆可在程式中斷(即0.2s)內完成。實驗結果顯示,人與助行器系統建立之人體狀態資訊和評估出的動態關節扭矩有一定程度的可信度。
The main purpose of this study is to establish a walking-aid system for hemiparesis people in one of their lower limbs. The system consists of a powered base and a grip stick. By wearing motion sensors, motion states of the user can be recorded and the torques on joints can be assessed via dynamics analysis in real time as he (or she) walks. For motion states measurements, angles, angular velocities, and angular accelerations of the user's main joints are measured with seven gyroscopes augmented with differential estimator. On the other hand, normal forces on the soles of feet are measured with force sensitive resistors, and a concept of equivalent area is utilized to simplify the model of force distribution on feet. In order not to interfere users' movement, transmission of sensor data is conducted via wireless Bluetooth technology in a dual-master configuration such that the problem of connection deficiency in a single-master case can be solved. As for dynamics analysis, Lagrangian mechanics is used to analyze the user-to-walking-aid system. The overall process including signal sensing, data transmission and dynamic equation calculation can be done within one control interrupt period (i.e. 0.2s). Experimental results show that, based on the user-to-walking-aid system, both measured motion states and assessed dynamic torques on user's joints are in a certain degree of credibility.
[1] T.A.English and M.Kilvington. In vivo records of hip loads using a femoral implant with telemetric output (a prelimary report). Journal of Biomedical Engineering, 1(2):111-115, April 1979.
[2] R.H. Brown, A.H. Burstein, and V.H. Frankel. Telemetering in vivo loads from nail plate implants. Journal of Biomechanics, 15(11):815-817,819-823, 1982.
[3] G.M. Kotzar, D.T. Davy, and V.M. Goldberg. Telemeterized in vivo hip joint force data: A report on two patients after total hip surgery. Journal of Orthopaedic Research, 9(5):621-633, September 1991.
[4] S. Tadano, R. Takeda, and H. Miyagawa. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. sensors, 13(7):9321-9343, 2013.
[5] Q. Li, J.A. Stankovic, and M.A. Hanson. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. 9(5):138-143, June 2009.
[6] S. Tadano, R. Takeda, and H. Miyagawa. Microsoft kinect sensor and its e ect. 19(2):4 - 10, April 2012.
[7] S. Srikanth. motion capture technology srikanth. Sreenidhi Institute of Science and Technology, 2012-2013.
[8] R.L. Bumann. Using load-cells to unveil limitations to the human movement system. Master's thesis, ETH Zurich.
[9] E. Klimiec. Measuring of foot plantar ressure—possible applications in quantitative analysis of human body mobility. Measurement Science and Technology, 28(5), 2017.
[10] A.H.A. Razak, A. Zayegh, R.K. Begg, and Yufridin Wahab. Foot plantar pressure measurement system: A review. 12(7):9884{9912, July 2012.
[11] P. Brenner. A technical tutorial on the ieee 802.11 protocol. Breezecom Wireless Communications, July 1996.
[12] Texas Instruments. 2.4-GHz Bluetooth®low energy and Proprietary System-on-Chip datasheet (Rev. D). http://www.ti.com/lit/ds/symlink/cc2541.pdf, June 2013.
[13] Texas Instruments. CC2640 SimpleLink Bluetooth® Wireless MCU datasheet (Rev. B). http://www.ti.com/lit/ds/symlink/cc2640.pdf, July
2016.
[14] Texas Instruments. CC2640/CC2650 Bluetooth low energy Software Developer's Guide (Rev. E). http://www.ti.com/lit/ug/swru393e/swru393e.pdf, March 2018.
[15] R.N. Jazar. Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications. John Wiley & Sons, inc, 2011.
[16] P. Di, J. Huang, and K. Sekiyama. Motion control of intelligent cane robot under normal and abnormal walking condition. 20th IEEE International Symposium on Robot and Human Interactive Communication, July 2011.
[17] P. Di, J. Huang, and S. Nakagawa. Real-time fall and overturn prevention control for human-cane robotic system. IEEE ISR 2013, October 2013.
[18] M.D. Ardema. Newton-Euler Dynamics. Springer, 2006.
[19] T.H. Hsieh. The study of shared contro; applied on a human-and-walking-aid system. Master's thesis, National Cheng Kung University, 2017.
[20] D.L. Paolo. Adjustments to zatsiorsky-seluyanov's segment inertia parameters. Journal of biomechanics, 29(9):1223{1230, 1996.
[21] STMicroelectronics. MEMS motion sensor: three-axis digital output gyroscope. https://www.st.com/resource/en/datasheet/l3gd20h.pdf, March 2013.
[22] H.Dong and X.Xiong. Design and analysis of a mems comb vibratory gyroscope. In UB - NE ASEE 2009 Conference, 2009.
[23] R.H. Brown, S.C. Schneider, and M.G. Mulligan. Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE TRAN-
SACTIONS ON INDUSTRIAL ELECTRONICS, 39(1):11{19, 1992.
[24] X.W. Lin. Model-fusion-based precision motion control of linear motors. Master's thesis, National Cheng Kung University, 2013.
[25] Texas Instruments. Inter-Integrated Circuit (I2C) Module User's Guide for the C6472/TCI648x DSP (Rev. C) . http://www.ti.com/lit/ug/sprue11c/sprue11c.pdf, October 2009.
[26] Interlink Electronics. FSR Integration Guide . https://www.pololu.com/file/0J749/FSR400-Series-Integration-Guide-13.pdf.
[27] Texas Instruments. TMS320F2810, TMS320F2811, TMS320F2812,TMS320C2810, TMS320C2811,TMS320C2812 DSPs datasheet (Rev. T) .http://www.ti.com/lit/ds/symlink/tms320f2812.pdf, May 2012.
[28] Arduino. ATmega328/P. http://ww1.microchip.com/downloads/en/
DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf, November 2016.
[29] STMicroelectronics. DUAL FULL-BRIDGE DRIVER. https://www.st.com/resource/en/datasheet/l298.pdf, 2000.
[30] Pololu. 20.4:1 metal gearmotor 25dx50l mm hp 12v with 48 cpr encoder.https://www.pololu.com/product/3215.
[31] zskpower. PBS-5312-3040 Car starter power bank and emergency kit chinese. http://www.zskpower.com/images/PBS-5312-3040%20Car%20starter%20power%20bank%20and%20emergency%20kit%20chinese.pdf.
[32] Texas Instruments. C281x C/C++ Header Files and Peripheral Examples (including F281x). http://www.ti.com/lit/zip/sprc097, August 2009.
[33] Texas Instruments. TMS320x281x DSP System Control and Interrupts Reference Guide. http://www.ti.com/lit/ug/spru078g/spru078g.pdf, August 2012.
[34] Texas Instruments. TMS320x281x DSP Event Manager (EV) Reference Guide. http://www.ti.com/lit/ug/spru065e/spru065e.pdf, June 2007.
[35] Texas Instruments. TMS320x281x Serial Peripheral Interface Reference Guide (Rev. E). http://www.ti.com/lit/ug/spru059e/spru059e.pdf, February 2009.
[36] Texas Instruments. TMS320x281x Serial Communications Interface Reference Guide (Rev. D). http://www.ti.com/lit/ug/spru059e/spru059e.pdf, July 2009.
[37] Wikipedia. Friction | Wikipedia, the free encyclopedia, 2018. [Online; accessed 7-June-2018].