| 研究生: |
張晏菘 Zhang, Yan-Song |
|---|---|
| 論文名稱: |
水熱法合成之碳化氮-二氧化鈦複合材料及其光催化及光電化學之應用 Hydrothermal Synthesis of Poly (Triazine Imide)-TiO2 Composites and Their Photocatalytic and Photoelectrochemical Applications |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 碳化氮-二氧化鈦複合材料 、水熱法 、光降解 、光電化學反應 |
| 外文關鍵詞: | poly triazine imide (PTI), PTI-TiO2 composite, hydrothermal synthesis, photodegradation, and photoelectrochemical reaction |
| 相關次數: | 點閱:116 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將無金屬之光催化材料PTI與二氧化鈦P25材料進行複合以形成含有不同二氧化鈦比例之複合材料。在本篇研究中發現複合材料中二氧化鈦比例以及均勻度是影響其在光催化應用中關鍵的角色。四組不同二氧化鈦含量之複合材料(10, 19, 28, 39 at%) 經由水熱法合成,十二烷基硫酸钠(Sodium dodecyl sulfate,SDS)被使用作為表面活性劑以利於二氧化鈦在複合材料中的分散性。
本篇研究使用了多樣儀器及技術,包含X光繞射儀、Rietveld analysis、穿透式電子顯微鏡、傅立葉轉換紅外光譜儀、X射線光電子能譜、光激發螢光頻譜儀、比表面積與孔隙度分析儀(BET),分別可以用於量測材料之相態、各成分之含量、形貌、化學鍵結、光學性質、電子電洞再結合速率以及表面積。我們發現碳化氮(PTI)-二氧化鈦(19 at%)在亞甲基藍及玫瑰紅B降解實驗以及光電化學實驗中有最好的表現,其優秀的表現可歸因於更高的光吸收以及大幅下降之再結合速率。更高的表面積也增進了其光降解實驗的表現。
A metal-free photocatalytic material, poly triazine imide (PTI), was coupled P25 (TiO2) with various ratios to form various composites.
In this study, we found that a ratio and uniformity of TiO2 nanoparticle were crucial for PTI-TiO2 composites in photocatalytic applications. Various PTI-TiO2 (x at%) (x = 10, 19, 28, and 39) composites were hydrothermally synthesized. SDS surfactants were used to improve the dispersion of TiO2 nanoparticles.
Various techniques including XRD, Rietveld analysis, TEM, FTIR, XPS, PL, and BET were employed to determine various characteristics, including phases, constituent component ratios, morphologies, chemical binding, optical properties, recombination rates of charge carriers, and surface areas. We found that the PTI-TiO2 (19 at%) composite exhibited the best photodegradation of methylene blue and Rhodamine B and photoelectrochemical reactions. The excellent photocatalytic performance was attributable to enhanced light harvest and substantially reduced recombination rates of photoinduced charge carriers. Improved surface areas were crucial for enhanced photodegradation.
1. A. Fujishima and K. Honda, "ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE," Nature, 238(5358), 37-+, (1972).
2. Y. Lu, "Antibacterial activity of TiO2/Ti composite photocatalyst films treated by ultrasonic cleaning," Advances in Materials Physics and Chemistry, 2, 9-12, (2012).
3. J. Peral, X. Domenech, and D. F. Ollis, "Heterogeneous photocatalysis for purification, decontamination and deodorization of air," Journal of Chemical Technology and Biotechnology, 70(2), 117-140, (1997).
4. M. A. Lazar, S. Varghese, and S. S. Nair, "Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates," Catalysts, 2(4), 572-601, (2012).
5. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, "Antireflection and Self-Cleaning Properties of a Moth-Eye-Like Surface Coated with TiO2 Particles," Langmuir, 27(7), 3275-3278, (2011).
6. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, "ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS," Chemical Reviews, 95(1), 69-96, (1995).
7. K. Maeda and K. Domen, "Photocatalytic Water Splitting: Recent Progress and Future Challenges," Journal of Physical Chemistry Letters, 1(18), 2655-2661, (2010).
8. D. T. Zhou, B. B. Yu, Q. L. Chen, H. Shi, Y. X. Zhang, D. X. Li, X. R. Yang, W. Zhao, C. X. Liu, G. Y. Wei, and Z. Chen, "Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method," Materials Research Bulletin, 124, 8, (2020).
9. T. Bhowmik, M. K. Kundu, and S. Barman, "Growth of One-Dimensional RuO2 Nanowires on g-Carbon Nitride: An Active and Stable Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions at All pH Values," Acs Applied Materials & Interfaces, 8(42), 28678-28688, (2016).
10. L. Ge, C. C. Han, and J. Liu, "Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange," Applied Catalysis B-Environmental, 108(1-2), 100-107, (2011).
11. A. Giwa, P. O. Nkeonye, K. A. Bello, and K. A. Kolawole, "Photocatalytic Decolourization and Degradation of C. I. Basic Blue 41 Using TiO<sub>2</sub> Nanoparticles," Journal of Environmental Protection, Vol.03No.09, 7, (2012).
12. A. Mills and S. Le Hunte, "An overview of semiconductor photocatalysis," Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35, (1997).
13. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, "Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study," The Journal of Physical Chemistry, 91(14), 3789-3798, (1987).
14. M. Malekshahi Byranvand, A. Kharata, L. Fatholahib, and Z. Malekshahi Beiranvand, "A Review on Synthesis of Nano-TiO2 via Different Methods," Journal of NanoStructures, 3, 1-9, (2013).
15. X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductor-based Photocatalytic Hydrogen Generation," Chemical Reviews, 110(11), 6503-6570, (2010).
16. Z. Chen, T. G. Deutsch, H. N. Dinh, K. Domen, K. Emery, A. J. Forman, N. Gaillard, R. Garland, C. Heske, T. F. Jaramillo, A. Kleiman-Shwarsctein, E. Miller, K. Takanabe, and J. Turner, Introduction, in Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Z. Chen, H. N. Dinh, and E. Miller, Editors. 2013, Springer New York: New York, NY. p. 1-5.
17. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," International Journal of Hydrogen Energy, 27(10), 991-1022, (2002).
18. R. Marschall, "Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity," Advanced Functional Materials, 24(17), 2421-2440, (2014).
19. S. Bai, J. Jiang, Q. Zhang, and Y. J. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations," Chemical Society Reviews, 44(10), 2893-2939, (2015).
20. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nature Materials, 4(6), 455-459, (2005).
21. P. Zhang, X. Li, C. Shao, and Y. Liu, "Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis," J. Mater. Chem. A, 3(7), 3281-3284, (2015).
22. Z. Zhang, J. Huang, B. Dong, Q. Yuan, Y. He, and O. S. Wolfbeis, "Rational tailoring of ZnSnO3/TiO2 heterojunctions with bioinspired surface wettability for high-performance humidity nanosensors," Nanoscale, 7(9), 4149-4155, (2015).
23. S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, "Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures," Advanced Materials, 23(2), 180-197, (2011).
24. J. W. Fu, J. G. Yu, C. J. Jiang, and B. Cheng, "g-C3N4-Based Heterostructured Photocatalysts," Advanced Energy Materials, 8(3), 31, (2018).
25. G. G. Zhang, Z. A. Lan, L. H. Lin, S. Lin, and X. C. Wang, "Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents," Chemical Science, 7(5), 3062-3066, (2016).
26. Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, "Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting," Journal of Physical Chemistry Letters, 1(17), 2607-2612, (2010).
27. Y. Zhang, T. Mori, J. Ye, and M. Antonietti, "Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation," Journal of the American Chemical Society, 132(18), 6294-6295, (2010).
28. H. J. Yu, R. Shi, Y. X. Zhao, T. Bian, Y. F. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, and T. R. Zhang, "Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution," Advanced Materials, 29(16), 8, (2017).
29. S. Bai, X. Wang, C. Hu, M. Xie, J. Jiang, and Y. Xiong, "Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis," Chemical Communications, 50(46), 6094-6097, (2014).
30. S. B. Yang, Y. J. Gong, J. S. Zhang, L. Zhan, L. L. Ma, Z. Y. Fang, R. Vajtai, X. C. Wang, and P. M. Ajayan, "Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light," Advanced Materials, 25(17), 2452-2456, (2013).
31. D. M. Teter and R. J. Hemley, "Low-compressibility carbon nitrides," Science, 271(5245), 53-55, (1996).
32. E. K. Wilson, "Old molecules, new chemistry," Chemical & Engineering News, 82(22), 34-35, (2004).
33. T. S. Miller, A. B. Jorge, T. M. Suter, A. Sella, F. Cora, and P. F. Mcmillan, "Carbon nitrides: synthesis and characterization of a new class of functional materials," Physical Chemistry Chemical Physics, 19(24), 15613-15638, (2017).
34. E. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B. V. Lotsch, and W. Schnick, "Poly(triazine imide) with Intercalation of Lithium and Chloride Ions (C3N3)(2)(NHxLi1-x)(3)center dot LiCl : A Crystalline 2D Carbon Nitride Network," Chemistry-a European Journal, 17(11), 3213-3221, (2011).
35. B. V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, and W. Schnick, "Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer," Chemistry-a European Journal, 13(17), 4969-4980, (2007).
36. M. Döblinger, B. V. Lotsch, J. Wack, J. Thun, J. Senker, and W. Schnick, "Structure elucidation of polyheptazine imide by electron diffraction—a templated 2D carbon nitride network," Chemical Communications, (12), 1541-1543, (2009).
37. G. Demazeau, H. Montigaud, B. Tanguy, M. Birot, and J. Dunogues, "The Stabilization of C3N4: New Development of Such a Material as Macroscopic Sample," The Review of High Pressure Science and Technology, 7, 1345-1347, (1998).
38. Z. H. Zhang, K. Leinenweber, M. Bauer, L. a. J. Garvie, P. F. Mcmillan, and G. H. Wolf, "High-pressure bulk synthesis of crystalline C6N9H3 center dot HCl: A novel C3N4 graphitic derivative," Journal of the American Chemical Society, 123(32), 7788-7796, (2001).
39. J. V. Badding and D. C. Nesting, "Thermodynamic Analysis of the Formation of Carbon Nitrides under Pressure," Chemistry of Materials, 8(2), 535-540, (1996).
40. M. J. Bojdys, J. O. Muller, M. Antonietti, and A. Thomas, "Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride," Chemistry-a European Journal, 14(27), 8177-8182, (2008).
41. M. B. Mesch, K. Barwinkel, Y. Krysiak, C. Martineau, F. Taulelle, R. B. Neder, U. Kolb, and J. Senker, "Solving the Hydrogen and Lithium Substructure of Poly(triazine imide)/LiCl Using NMR Crystallography," Chemistry-a European Journal, 22(47), 16876-16888, (2016).
42. S. Y. Chong, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, A. Thomas, M. Antonietti, and M. J. Bojdys, "Tuning of gallery heights in a crystalline 2D carbon nitride network," Journal of Materials Chemistry A, 1(4), 1102-1107, (2013).
43. C. Fettkenhauer, X. Wang, K. Kailasam, M. Antonietti, and D. Dontsova, "Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl2 eutectics," Journal of Materials Chemistry A, 3(42), 21227-21232, (2015).
44. C. Fettkenhauer, J. Weber, M. Antonietti, and D. Dontsova, "Novel carbon nitride composites with improved visible light absorption synthesized in ZnCl2-based salt melts," Rsc Advances, 4(77), 40803-40811, (2014).
45. L. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang, and X. Wang, "Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks," Chemical Science, 8(8), 5506-5511, (2017).
46. X. Yan, J. Qin, G. Ning, J. Li, T. Ai, X. Su, and Z. Wang, "A novel poly(triazine imide) hollow tube/ZnO heterojunction for tetracycline hydrochloride degradation under visible light irradiation," Advanced Powder Technology, 30(2), 359-365, (2019).
47. X. Yan, J. T. Li, and H. F. Zhou, "Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies," Journal of Materials Science-Materials in Electronics, 30(12), 11706-11713, (2019).
48. H. H. Ou, L. H. Lin, Y. Zheng, P. J. Yang, Y. X. Fang, and X. C. Wang, "Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution," Advanced Materials, 29(22), 6, (2017).
49. K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker, and B. V. Lotsch, "Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution," Journal of the American Chemical Society, 136(5), 1730-1733, (2014).
50. J. Kouvetakis, A. Bandari, M. Todd, B. Wilkens, and N. Cave, "NOVEL SYNTHETIC ROUTES TO CARBON-NITROGEN THIN-FILMS," Chemistry of Materials, 6(6), 811-814, (1994).
51. G. Algara-Siller, N. Severin, S. Y. Chong, T. Bjorkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, and M. J. Bojdys, "Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor," Angewandte Chemie-International Edition, 53(29), 7450-7455, (2014).
52. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, and J. M. Carlsson, "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts," Journal of Materials Chemistry, 18(41), 4893-4908, (2008).
53. E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, and A. D. Norman, "Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures," New Journal of Chemistry, 26(5), 508-512, (2002).
54. H. B. Zheng, W. Chen, H. Gao, Y. Y. Wang, H. Y. Guo, S. Q. Guo, Z. L. Tang, and J. Y. Zhang, "Melem: an efficient metal-free luminescent material," Journal of Materials Chemistry C, 5(41), 10746-10753, (2017).
55. V. W. H. Lau, M. B. Mesch, V. Duppel, V. Blum, J. Senker, and B. V. Lotsch, "Low-Molecular-Weight Carbon Nitrides for Solar Hydrogen Evolution," Journal of the American Chemical Society, 137(3), 1064-1072, (2015).
56. F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. C. Wang, and M. J. Bojdys, "Functional carbon nitride materials design strategies for electrochemical devices," Nature Reviews Materials, 2(6), 17, (2017).
57. O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in Solid State Chemistry, 32(1-2), 33-177, (2004).
58. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," Science, 293(5528), 269-271, (2001).
59. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable & Sustainable Energy Reviews, 11(3), 401-425, (2007).
60. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, "Formation of titanium oxide nanotube," Langmuir, 14(12), 3160-3163, (1998).
61. U. Diebold, "The surface science of titanium dioxide," Surface Science Reports, 48(5-8), 53-229, (2003).
62. Y. Qiu, K. Nasu, and C. Q. Wu, "Sextic anharmonicity and ferroelectricity in photoexcited SrTiO3 at low temperatures," New Journal of Physics, 9, 8, (2007).
63. D. a. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," Journal of Materials Science, 46(4), 855-874, (2011).
64. L. Zhang, H. F. Ji, Y. K. Lei, and W. Xiao, "Oxygen adsorption on anatase surfaces and edges," Applied Surface Science, 257(20), 8402-8408, (2011).
65. A. Di Paola, M. Bellardita, and L. Palmisano, "Brookite, the Least Known TiO2 Photocatalyst," Catalysts, 3(1), 36-73, (2013).
66. E. Pelizzetti and C. Minero, "MECHANISM OF THE PHOTOOXIDATIVE DEGRADATION OF ORGANIC POLLUTANTS OVER TIO2 PARTICLES," Electrochimica Acta, 38(1), 47-55, (1993).
67. R. Fagan, D. E. Mccormack, D. D. Dionysiou, and S. C. Pillai, "A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern," Materials Science in Semiconductor Processing, 42, 2-14, (2016).
68. V. Cristante, A. Prado, S. Jorge, J. Valente, A. Florentino, and P. Padilha, "Synthesis and characterization of TiO2 chemically modified by Pd(II) 2-aminothiazole complex for the photocatalytic degradation of phenol," Journal of Photochemistry and Photobiology A: Chemistry, 195, 23-29, (2008).
69. Q. Wang, M. A. Zhang, C. C. Chen, W. H. Ma, and J. C. Zhao, "Photocatalytic Aerobic Oxidation of Alcohols on TiO2: The Acceleration Effect of a Bronsted Acid," Angewandte Chemie-International Edition, 49(43), 7976-7979, (2010).
70. X. Z. Fu, L. A. Clark, W. A. Zeltner, and M. A. Anderson, "Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene," Journal of Photochemistry and Photobiology a-Chemistry, 97(3), 181-186, (1996).
71. B. Oregan and M. Gratzel, "A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS," Nature, 353(6346), 737-740, (1991).
72. M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, "Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime," Journal of Physical Chemistry C, 111(2), 1035-1041, (2007).
73. U. Kirner, K. D. Schierbaum, W. Gopel, B. Leibold, N. Nicoloso, W. Weppner, D. Fischer, and W. F. Chu, "LOW AND HIGH-TEMPERATURE TIO2 OXYGEN SENSORS," Sensors and Actuators B-Chemical, 1(1-6), 103-107, (1990).
74. P. K. Dutta, A. Ginwalla, B. Hogg, B. R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, and S. Akbar, "Interaction of carbon monoxide with anatase surfaces at high temperatures: Optimization of a carbon monoxide sensor," Journal of Physical Chemistry B, 103(21), 4412-4422, (1999).
75. U. Gesenhues, "Calcination of metatitanic acid to titanium dioxide white pigments," Chemical Engineering & Technology, 24(7), 685-694, (2001).
76. S. Farrokhpay, "A review of polymeric dispersant stabilisation of titania pigment," Advances in Colloid and Interface Science, 151(1-2), 24-32, (2009).
77. K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189, (2012).
78. B. S. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, "Mesoporous TiO2 Core-Shell Spheres Composed of Nanocrystals with Exposed High-Energy Facets: Facile Synthesis and Formation Mechanism," Langmuir, 27(13), 8500-8508, (2011).
79. K. Katsumata, S. Okazaki, C. E. J. Cordonier, T. Shichi, T. Sasaki, and A. Fujishima, "Preparation and Characterization of Self-Cleaning Glass for Vehicle with Niobia Nanosheets," Acs Applied Materials & Interfaces, 2(4), 1236-1241, (2010).
80. M. Gratzel, "Photoelectrochemical cells," Nature, 414(6861), 338-344, (2001).
81. M. A. Green, "Third generation photovoltaics: Ultra-high conversion efficiency at low cost," Progress in Photovoltaics, 9(2), 123-135, (2001).
82. M. Gratzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology a-Chemistry, 164(1-3), 3-14, (2004).
83. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, and Y. Wei, "Counter electrodes in dye-sensitized solar cells," Chemical Society Reviews, 46(19), 5975-6023, (2017).
84. A. Listorti, B. O’regan, and J. R. Durrant, "Electron Transfer Dynamics in Dye-Sensitized Solar Cells," Chemistry of Materials, 23(15), 3381-3399, (2011).
85. K. Yu and J. Chen, "Enhancing Solar Cell Efficiencies Through 1-D Nanostructures," Nanoscale research letters, 4, 1-10, (2009).
86. K. Marycz, A. Smieszek, J. Grzesiak, A. Siudzinska, M. Maredziak, A. Donesz-Sikorska, and J. Krzak, "The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial," Biomed Research International, 11, (2015).
87. R. Fujita, M. Sakairi, T. Kikuchi, and S. Nagata, "Corrosion resistant TiO2 film formed on magnesium by liquid phase deposition treatment," Electrochimica Acta, 56(20), 7180-7188, (2011).
88. W. Choi, J. Y. Ko, H. Park, and J. S. Chung, "Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone," Applied Catalysis B-Environmental, 31(3), 209-220, (2001).
89. Y. Hou, F. Zuo, A. Dagg, and P. Feng, "Visible Light-Driven α-Fe2O3 Nanorod/Graphene/BiV1–xMoxO4 Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting," Nano Letters, 12(12), 6464-6473, (2012).
90. S. Bhargava, H. R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, "Staggered to straddling band lineups in InAs/Al(As,Sb)," Applied Physics Letters, 74(8), 1135-1137, (1999).
91. Z. Q. He, Y. Q. Shi, C. Gao, L. N. Wen, J. M. Chen, and S. Song, "BiOCl/BiVO4 p-n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation," Journal of Physical Chemistry C, 118(1), 389-398, (2014).
92. R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, and H. G. Xing, "Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment," Nano Letters, 15(9), 5791-5798, (2015).
93. A. Opitz, "Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation," Journal of Physics-Condensed Matter, 29(13), 16, (2017).
94. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature, 389(6649), 362-364, (1997).
95. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature, 417(6885), 156-159, (2002).
96. L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, "Cascade Type-I Quantum Well GaSb-Based Diode Lasers," Photonics, 3(2), 10, (2016).
97. A. G. Thompson, M. Cardona, K. L. Shaklee, and J. C. Woolley, "ELECTROREFLECTANCE IN GAAS-GAP ALLOYS," Physical Review, 146(2), 601-&, (1966).
98. Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan, and M. Fan, "Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation," Rsc Advances, 4(26), 13610-13619, (2014).
99. J. G. Yu, S. H. Wang, J. X. Low, and W. Xiao, "Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air," Physical Chemistry Chemical Physics, 15(39), 16883-16890, (2013).
100. S. F. Chen, Y. F. Hu, S. G. Meng, and X. L. Fu, "Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3," Applied Catalysis B-Environmental, 150, 564-573, (2014).
101. F. Opoku, K. K. Govender, C. Van Sittert, and P. P. Govender, "Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants," Advanced Sustainable Systems, 1(7), 24, (2017).
102. S. W. Cao, J. X. Low, J. G. Yu, and M. Jaroniec, "Polymeric Photocatalysts Based on Graphitic Carbon Nitride," Advanced Materials, 27(13), 2150-2176, (2015).
103. X. Lu, Q. Wang, and D. Cui, "Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite," Journal of Materials Science & Technology, 26(10), 925-930, (2010).
104. Y. J. Wang, R. Shi, J. Lin, and Y. F. Zhu, "Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4," Energy & Environmental Science, 4(8), 2922-2929, (2011).
105. S. C. Yan, S. B. Lv, Z. S. Li, and Z. G. Zou, "Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities," Dalton Transactions, 39(6), 1488-1491, (2010).
106. M. Yang, Q. Huang, and X. Q. Jin, "ZnGaNO solid solution-C3N4 composite for improved visible light photocatalytic performance," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 177(8), 600-605, (2012).
107. L. Ge, F. Zuo, J. K. Liu, Q. Ma, C. Wang, D. Z. Sun, L. Bartels, and P. Y. Feng, "Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots," Journal of Physical Chemistry C, 116(25), 13708-13714, (2012).
108. F. Yang, V. Kuznietsov, M. Lublow, C. Merschjann, A. Steigert, J. Klaer, A. Thomas, and T. Schedel-Niedrig, "Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes," Journal of Materials Chemistry A, 1(21), 6407-6415, (2013).
109. F. Yang, M. Lublow, S. Orthmann, C. Merschjann, T. Tyborski, M. Rusu, S. Kubala, A. Thomas, R. Arrigo, M. Havecker, and T. Schedel-Niedrig, "Metal-Free Photocatalytic Graphitic Carbon Nitride on p-Type Chalcopyrite as a Composite Photocathode for Light-Induced Hydrogen Evolution," Chemsuschem, 5(7), 1227-1232, (2012).
110. Y. L. Tian, B. B. Chang, Z. C. Yang, B. C. Zhou, F. N. Xi, and X. P. Dong, "Graphitic carbon nitride-BiVO4 heterojunctions: simple hydrothermal synthesis and high photocatalytic performances," Rsc Advances, 4(8), 4187-4193, (2014).
111. M. Xu, L. Han, and S. J. Dong, "Facile Fabrication of Highly Efficient g-C3N4/Ag2O Heterostructured Photocatalysts with Enhanced Visible-Light Photocatalytic Activity," Acs Applied Materials & Interfaces, 5(23), 12533-12540, (2013).
112. S. M. Wang, D. L. Li, C. Sun, S. G. Yang, Y. Guan, and H. He, "Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation," Applied Catalysis B-Environmental, 144, 885-892, (2014).
113. H. J. Yan and H. X. Yang, "TiO2-g-C3N4 composite materials for photocatalytic H-2 evolution under visible light irradiation," Journal of Alloys and Compounds, 509(4), L26-L29, (2011).
114. I. G. Godinez and C. J. G. Darnault, "Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity," Water Research, 45(2), 839-851, (2011).
115. D. Bish and S. Howard, "Quantitative Phase Analysis Using the Rietveld Method," Journal of Applied Crystallography, 21, 86-91, (1988).
116. S. Kumar, S. Supriya, and M. Kar, Effect of Sintering Temperature on Electrical Properties of BHF Ceramics Prepared by Modified Sol-Gel Method. Vol. 4. 2017.
117. J. Y. Y. Loh and N. P. Kherani, "X-ray Photospectroscopy and Electronic Studies of Reactor Parameters on Photocatalytic Hydrogenation of Carbon Dioxide by Defect-Laden Indium Oxide Hydroxide Nanorods," Molecules, 24(21), 11, (2019).
118. C. H. Chen and K. S. Chang, "Fabrication and Photodegradation Application of Isopropanol-Functionalized Poly (Triazine Imide)," Journal of Electronic Materials, 49(2), 1518-1526, (2020).
119. Z. Bicheng, P. Xia, Y. Li, W. Ho, and J. Yu, "Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst," Applied Surface Science, (2016).
120. S. Ravi, S. Zhang, Y. R. Lee, K. K. Kang, J. M. Kim, J. W. Ahn, and W. S. Ahn, "EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions," Journal of Industrial and Engineering Chemistry, 67, 210-218, (2018).
121. T. Jia, F. Fu, D. Yu, J.-L. Cao, and G. Sun, "Facile synthesis and characterization of N-doped TiO 2 /C nanocomposites with enhanced visible-light photocatalytic performance," Applied Surface Science, 430, (2017).
122. P. Panda, N. Gopala Krishna, P. Rajput, and R. Rajagopalan, "Local crystal structure and mechanical properties of sputtered Ti-doped AlN thin films," Physical Chemistry Chemical Physics, 20, (2018).
校內:2022-09-01公開