簡易檢索 / 詳目顯示

研究生: 吳漢倫
Wu, Han-Lun
論文名稱: 擴展WWM模式在陡變地形和波流交會情況繞射效應之研究
WWM extended to account for wave diffraction on a current over a rapidly varying topography
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 50
中文關鍵詞: 波浪繞射浪流交互作用相位非偶合波浪力平衡方程式陡變地形
外文關鍵詞: phase-decoupled wave action balance equation, rapidly varying topography, wave diffraction, wave-current interaction
相關次數: 點閱:154下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然風浪數值模式目前已被廣泛的使用,但此種模式之架構是相位平均模式,無法描述波浪折、繞射共存效應。為了要彌補模式的缺失,本文以 Hsu 等人 (2005) 提出之 WWM ( wind wave model ) 風浪模式為基礎,參考 Holthuijsen 等人 (2003) 所提出的相位非耦合模式 ( phase-decoupled model ),並從演進型緩坡方程式 ( evolution equation of mild slope Equation,EEMSE ) 中考慮海床坡度、海床曲率和浪流交互作用之影響,經由交互疊代方式在 WWM 模式中考慮波浪折、繞射共存的影響機制。本文先從波浪交互作用之緩坡方程式推導繞射修正參數,再以相位非偶合模式修正波浪傳遞方向之變化率,重新代回波浪作用力平衡方程式 ( wave action balance equation ) 計算方向波譜。本文同時以五種不同案例來進行模式驗證,並探討繞射修正參數每一個增加項對於計算結果的影響性,以便分析模式計算波浪繞射之合理性。數值計算結果顯示,理論值和觀測值呈現良好一致性。

    The WWM (wind wave model) is extended to account for wave refraction–diffraction for wind waves propagating over a rapidly varying seabed in the presence of current. The wave diffraction effect is introduced into the wave action balance equation through the correction of wavenumber and propagation velocities using a diffraction-corrected parameter. The approximation is based on the mild-slope equation for wave refraction-diffraction with current effect on a rapidly varying sea bottom. The relative importance of additional terms that influence the diffraction corrected parameter in the presence of currents was first discussed. The comparison of numerical results with other numerical models and experiments show that the validity of the model for describing wave propagating over a rapidly varying bottom with current effect is satisfactory. The implementation of this phase-decoupled refraction diffraction approximation in WWM shows capability of the present model can be used in most practical engineering situations.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 符號說明 VIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 前人研究 3 1.3 本文組織 5 第二章 理論分析 6 2.1 繞射效應 6 2.1.1 含流效應之高階緩坡方程式 6 2.1.2 繞射修正參數之求解 7 2.1.3 浪流交互作用之能量守恆方程式 12 2.1.4 繞射修正參數中影響因素之重要性 14 2.2 波浪作用力平衡方程式 18 2.2.1 波浪作用力平衡方程式 18 2.2.2 波浪作用力平衡方程式之修正 18 第三章 數值方法 20 3.1 分步法 20 3.2 平滑化處理 21 3.3 模式疊代之方法 21 第四章 模式驗證 23 4.1 波浪正向入射橢圓淺灘 23 4.2 波浪正向入射半無限長防波堤 27 4.3 波浪正向入射防波堤中缺口 30 4.4 波浪入射斜向橢圓形淺灘 33 4.5 近岸流 (浪流交會情況) 39 第五章 結論與建議 46 5.1 結論 46 5.2 建議 47 參考文獻 48

    1. Arthur, R. S., “Refraction of shallow water waves: The combined effects of currents and underwater topography,” EOS Trans. AGU, 31, 549-552, (1950).
    2. Berkhoff, J. C. W., “Computations of combined refraction-diffraction,” Proc. 13th Int. Conf. Coastal Engineering, ASCE, New York, pp. 471-490 (1972).
    3. Berkhoff, J. C. W., Booij, N., and Radder, A. C., “Verification of Numerical Wave Propagation Models for Simple Harmonic Linear Water Waves,” Coastal Engineering, Vol. 6, pp. 255-279 (1982).
    4. Booij, N., “Gravity waves on water with non-uniform depth and current,” PhD Thesis. Delft University of Technology, Delft, the Netherlands, pp. 130 (1981).
    5. Booij, N., Holthuijsen., L. H., and Ris, R. C., “The SWAN Wave Model for Shallow Water,” Proceedings of 24th International Conference on Coastal Engineering, ASCE, Orlando, Vol. 1, pp. 668-676 (1996).
    6. Booij, N., Holthuijsen L. H., Doorn N., and Kieftenburg A. T. M. M., “Diffraction in a spectral wave model,” Proc. 3rd Intl. Symposium Ocean Wave Measurement and Analysis EAVES 97. ASCE, New York, pp. 243-255 (1997).
    7. Booij, N., Ris, R. C., and Holthuijsen, L. H., “A third-generation Wave Model for coastal Regions, Part I: Model Description and Validation,” JGR-Oceans 98JC02622, Vol. 104, No. C4, pp.7649 (1999a).
    8. Booij, N., Ris R. C., and Holthuijsen L. H., “A third-generation Wave Model for coastal Regions 2: Verification,” JGR-Oceans, Vol. 104, No. C4, pp.7667-7682 (1999b).
    9. Chen, G.. Y., and Chan, H. W., “Diffraction Effects in Phase-Averaged Wave Model,” 第26屆海洋工程研討會論文集,42頁-53頁 (2004)。
    10. Dingemans, M. W., “Surface wave propagation over an uneven bottom; evaluation of two-dimensional horizatal wave model,” Delf Hydraulics, Report W301, pp.117 (1985).
    11. Dingemans, M. W., “Water wave propagation over uneven bottoms, Part 1-linear wave propagation,” Adv. Ser. Ocean Eng., World Scientific 13, pp. 471 (1997).
    12. Donea, J., “A Taylor-Galerkin Method for Convective Transport Problem,” International Journal for Numerical Methods in Engineering, Vol. 20, pp. 101-119 (1984).
    13. Hasselmann, K., T.P. Barnett, E. Bouws, H. Garlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D.J. Olbers, K. Richter, W. Sell and H. Walden, “ Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl, 12, A8 (1973).
    14. Holthuijsen, L. H., Herman, A., and Booij, N., “ Phase - decoupled refraction- deffraction for spectral wave models,” Coastal Engineering, Vol. 49, pp.291-305 (2003).
    15. Hsu, T. W., and Wen, C. C., ”A parabolic equation extened to account for rapidly varying topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a).
    16. Hsu, T. W., and Wen, C. C., “On radiation boundary conditions and wave transformation across the surf zone,” China Ocean Engineering, Vol. 15, No. 3, pp. 395-406 (2001b).
    17. Hsu, T. W., Ou, S. H., and Liau, J. M., “Hindcasting nearshore wind waves using a FEM code for SWAN,” Coastal Engineering, Vol. 52, pp. 177-195 (2005).
    18. Keller, J. B., “Geometric Theory of Diffraction,” J. Opt. Soc. Am., Vol. 52, pp. 116-130 (1957).
    19. Kirby, J. T., “Higher-order approximation in the parabolic equation method for water waves,” J. Geophys. Res., Vol. 91 (C1), pp. 933-952 (1986).
    20. Liu, P. L.- F., “Wave-Current Interactions on a Slowly Varying Topography,” J. Geophys. Res., Vol. 88, pp. 4421-4426 (1983).
    21. Mase, H., and Takayama, T., “Spectral wave transformation model with diffraction effect,” Proc. 4th Int. Symposium Ocean Wave Measurement and Analysis, WAVES 2001, Vol. 1. ASCE, New York, pp. 814-823 (2001).
    22. Resio, D. T., “A steady-state wave model for coastal applications,” Proc. 21st Int. Conf. Coast. Eng., ASCE. New York, pp. 929-940 (1988).
    23. Rivero, F. J., Arcilla A. S., and Carci E., ”Analysis of diffraction in spectral wave models,” Proc. 3rd Int. Symosium Ocean Wave Measurement and Analysis, WAVES ’97, ASCE. New York, pp. 431-445 (1997).
    24. Smith, R., and Sprinks, T., “Scattering of surface waves by a conical island,” J. FluidMech., 72, pp. 373-384 (1975).
    25. Selmin, V., Donea J., and Quartapelle L., “Finite Element Methods for Nonlinear Advection,” Computer Methods in Applied Mechanics and Engineering, Vol. 52, pp. 817-845 (1985).
    26. Tolman, H. L., User manual and system documentation of WAVEWATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151, pp. 97 (1997).
    27. Tolman, H. L., User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166 , pp. 110 (1999a).
    28. Vincent, C. L., and Briggs, M. J., “Refraction-diffraction of irregular waves over a mound,” J. Waterw., Port, Coast., Ocean Eng., ASCE, New York, Vol. 115(2), pp. 269-284 (1989).
    29. WAMDI Group, “The WAM Model – A Third Generation Ocean Wave Prediction Model,” Journal of Physical Oceanography, Vol. 18, pp. 1775-1810 (1988).
    30. Yanenko, N. N., Numerical Methods in Fluid Dynamics, MIR Publisher, Moscow (1986).

    下載圖示 校內:2008-08-31公開
    校外:2008-08-31公開
    QR CODE