簡易檢索 / 詳目顯示

研究生: 曾仁威
Tseng, Ren-Wei
論文名稱: 具P與R接頭之多模式空間七連桿機構的設計與位置分析
Design and Position Analysis of Multiple-Mode Seven-Link Spatial Linkages Containing Revolute and Prismatic Joints
指導教授: 黃金沺
Huang, Chin-tien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 118
中文關鍵詞: 多模式逆向運動學
外文關鍵詞: multiple-mode, inverse kinematic
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討空間多模式七連桿機構的位置分析,這些機構分別由Bennett 4R機構、Goldberg 5R機構與RPRP機構三種過拘束機構組合而成,包括由Bennett 4R機構與Goldberg 5R機構共用兩相鄰接頭組成的多模式7R機構、由Bennett 4R機構與RPRP機構共用一R接頭組成的多模式5R2P機構以及由兩組RPRP機構共用一P接頭組成的多模式4R3P機構。
    文中將介紹此三種多模式七連桿機構的組合方法與組合類型,並使用和修改Raghavan和Roth的空間6R機械臂逆向運動學方法,處理給定輸入的空間閉迴路七連桿位置分析問題,找出輸入範圍內,各接頭對輸入接頭的運動曲線。
    根據分析結果,這三種多模式七連桿機構的運動皆可以分成以下三種運動模式:兩種用於組合的過拘束機構模式以及機構自身的一般七連桿機構模式。此外不同模式於特定位置,會出現模式交會的交會構形,可進行模式轉換。
    多模式7R機構與多模式5R2P機構利用模式轉換,不需經過拆解,就能到達所有分支,且包含過拘束機構的簡潔運動,能夠避開一般七連桿機構運動的死點位置。對多模式4R3P機構而言,雖可轉換模式,但因輸入不同,有範圍限制,會出現迴圈之間無法連接的情形,且欲到達特定分支,仍須拆解並重組機構。

    This thesis conducts the kinematic analysis of multiple-mode seven-link linkages, which are constructed by combining two overconstrained mechanisms with one or two common joints. The overconstrained mechanisms used in this thesis are Bennett 4R, Goldberg 5R and RPRP linkages.
    In this thesis, the construction of the multiple-mode 7R, 5R2P and 4R3P linkages and their variations are investigated. The analytical inverse kinematic solutions of open six-link manipulators are adopted to analyze close loop seven-link linkages for a given driving joint angle.
    According to the result of position analysis, each multiple-mode linkage consists of three operation mode: two overconstrained mechanism mode and a general seven-link linkage mode. These modes can be switched by locking or triggering joints at connecting configurations.
    For multiple-mode 7R and 5R2P linkages, the simpler motions of the overconstrained mechanism modes allow the linkages to be operated without the need of disassembling/reconnecting the linkages. However, for the multiple-mode 4R3P linkage, it is still necessary to disconnect/reassemble the linkage when moving between certain branches.

    摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號說明 XII 第一章 緒言 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 本文架構 5 第二章 基本概念 6 2-1 D-H齊次轉換矩陣 6 2-2 剛體位移螺旋 9 2-2-1 線坐標 9 2-2-2 螺旋與螺旋系統 10 2-2-3 剛體位移螺旋 10 2-3 Bennett 4R機構 12 2-3-1 Bennett機構之幾何關係 12 2-3-2 螺旋坐標之建立 13 2-4 Goldberg 5R機構 14 2-5 RPRP 機構 17 2-5-1 RPRP 機構之幾何關係 17 2-5-2 螺旋坐標之建立 20 2-6 空間中兩軸之公垂線關係 22 2-7 由兩組Bennett機構組成之空間多模式7R機構 23 第三章 一般空間七連桿機構之位置分析 26 3-1 一般空間7R與6R1P機構之位置分析 27 3-2 一般空間5R2P機構之位置分析 32 3-2-1 單變數矩陣Σ維度為12×12的情形 32 3-2-2 單變數矩陣Σ維度為6×6的情形 36 3-3 一般空間4R3P機構之位置分析 39 3-3-1 單變數矩陣Σ維度為6×6的情形 39 3-3-2 單變數矩陣Σ維度為3×3的情形 41 3-4 結論 43 第四章 由Bennett機構與Goldberg 5R機構組成之空間多模式7R機構 45 4-1 組合方法 45 4-2 組合種類 50 4-3 多模式7R機構位置分析 53 4-4 三種運動模式的轉換與特性 61 4-4-1 多模式7R機構的三種運動模式 61 4-4-2 多模式7R機構的模式轉換 63 4-5 結論 65 第五章 由Bennett機構與RPRP機構組成之空間多模式5R2P機構 67 5-1 組合方法 67 5-2 組合種類 71 5-3 多模式5R2P機構位置分析 74 5-4 三種運動模式的轉換與特性 88 5-4-1 多模式5R2P機構的三種運動模式 88 5-4-2 多模式5R2P機構的模式轉換 91 5-5 結論 93 第六章 由兩組RPRP機構組成之空間多模式4R3P機構 94 6-1 組合方法 94 6-2 組合種類 97 6-3 多模式4R3P機構位置分析 100 6-4 三種運動模式的轉換與特性 107 6-4-1 多模式4R3P機構的三種運動模式 107 6-4-2 多模式4R3P機構的模式轉換 109 6-5 結論 111 第七章 結論與未來方向 113 7-1 結論 113 7-2 未來方向 114 參考文獻 116

    1. Bennett, G. T., “A New Mechanism,” Engineering, Vol. 76, pp. 777-778, 1903.
    2. Baker, J. E., “The Bennett, Goldberg and Myard Linkages in Perspective,” Mechanism and Machine Theory, Vol. 14, pp. 239-253, 1979.
    3. Baker, J. E., “A Comparative Survey of the Bennett-Based, 6-Revolute Kinematic Loops,” Mechanism and Machine Theory, Vol. 28, No. 1, pp. 83-96, 1993.
    4. Cleghorn, W. L., Mechanics of Machine, Oxford University Press, 2005.
    5. Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics, Vol. 77, pp. 215-221, 1955.
    6. Galletti, C. and Fanghella, P., “Single-Loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761, 2001.
    7. Fanghella, P., Galleti, C., and Gianotti, E., “Parallel Robots That Change Their Group of Motion,” Advances in Robot Kinematics, Springer, pp. 49-56, 2006.
    8. Huang, C., “The Cylindroid Associated with Finite Motions of the Bennett Mechanism,” ASME Journal of Mechanical Design, 119, pp. 521-524, 1997.
    9. Huang, C. and Sun, C. C., “An Investigation of Screw Systems in the Finite Displacements of Bennett-Based 6R Linkages,” ASME Journal of Mechanical Design, 119, pp. 426-430, 2000.
    10. Kong, X. and Gosselin, C. M., “Type Synthesis of Three-Degree- of-Freedom Spherical Parallel Manipulators,” International Journal of Robotics Research, 23(3), pp. 237–245, 2004.
    11. Kong, X., Gosselin, C. M., and Richard, P.-L., “Type Synthesis of Parallel Mechanisms with Multiple Operation Modes,” ASME Journal of Mechanical Design, 129(7), pp. 595–601, 2007.
    12. Kong, X. and Huang, C., “Type Synthesis of Single-DOF Single-Loop Mechanisms with Two Operation Modes,” Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, 2009.
    13. Lee, H. Y. and Liang, C. G., “Displacement Analysis of the General Spatial 7-Link 7R Mechanism,” Mechanism and Machine Theory, Vol. 23, No. 3, pp. 219-226, 1988.
    14. Waldron, K. J., “Hybrid Overconstrained Linkages,” Journal of Mechanism, 2, pp. 73-78, 1968.
    15. Waldron, K. J. and Kinzel, G. L., Kinematics, Dynamics, and Design of Machinery, John Wiley & Sons, Inc, 2004.
    16. Wohlhart, K., “Kinematotropic linkages,” Recent Advances in Robot Kinematics, J. Lenarcic and V. Parenti-Castelli (Eds). Kluwer Academic, Dordrecht, The Netherlands, pp. 359-368, 1996.
    17. Raghavan, M. and Roth, B., “Kinematic Analysis of the 6R Manipulator of General Geometry,” Proc. 5th International Symposium on Robotics Research, edited by H. Miura and S. Arimoto, MIT Press, Cambridge, MA; preprint 1989, final 1990.
    18. Raghavan, M. and Roth, B., ”Ineverse Kinematics of General 6R Mainipulator and Related Linkages,” Proceedings of ASME International Design Engineering Technical Coferences, Chicago, 1990.
    19. Kohli, D. and Osvatic, M., “Inverse Kinematics of General 6R and 5R,P Serial Manipulators,” ASME Journal of Mechanical Design, Vol. 115, pp. 922-931, 1993.
    20. Mavroidis, C., Ouezdou, F. B. and Bidaud, P., “Inverse Kinematics of Six-degree of Freedom “General” and “Special” Manipulator Using Symbolic Computation ,” Robotica, Vol.12, pp. 421-430, 1994.
    21. Manseur, R. and Doty, K. L., “A Robot Manipulator With 16 Real Inverse Kinematic Solution Sets,” The International Journal of Robotics Research, Vol. 8 (5), pp. 75-79, 1989.
    22. Tsai, L. W. and Morgan, A., “Solving the Kinematics of the Most General Six and Five-Degree-of-Freedom Manipulators by Continuation Methods,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 189-200, 1985.
    23. Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulator, Wiley-Interscience Publication, John Wiley & Sons, Inc, 1999.
    24. Huang, C., Kong, X., Ou, T., “Position Analysis of Bennett-Based Multiple-Mode 7R Linkage,” Proceedings of ASME International Design Engineering Technical Coferences & Computers and Information in Engineering Conference, San Diego, California, USA, 2009.
    25. 劉慈恩, Bennett相關過拘束機構之有限運動線性性質研究,國立成功大學機械工程學系碩士論文,台南市,1996。
    26. 孫啟智,Bennett-Based 6R與Bricard 6R 相關過拘束機構有線運動線性性質之探討,國立成功大學機械工程學系碩士論文,台南市,1998。
    27. 高子翔,機械臂保守剛性矩陣轉換之模擬,國立成功大學機械工程學系碩士論文,台南市,2001。
    28. 涂翰宗,空間RPRP過拘束機構之線性性質研究,國立成功大學機械工程學系碩士論文,台南市,2002。
    29. 歐慈修,以Bennett機構組合之空間多模式7R機構位置分析,國立成功大學機械工程學系碩士論文,台南市,2009。

    下載圖示 校內:立即公開
    校外:2011-07-14公開
    QR CODE