| 研究生: |
吳俊逸 Wu, Jyun-Yi |
|---|---|
| 論文名稱: |
2,2, 聯氮-雙(3-乙基苯并噻唑啉-6-磺酸)修飾奈米碳管電極在尿蛋白感測之研究 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)-Modified Carbon Nanotube Electrodes for Albumin Sensing in Urine |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 牛血清白蛋白 、ABTS 、循環伏安法 、感測白蛋白 |
| 外文關鍵詞: | ABTS, Bovine serum albumin, Cyclic voltammetry, Sensing BSA |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體尿蛋白在腎炎與腎病變診斷扮演重要的角色,尿蛋白的自我檢測可以達到預防勝於治療效果。本研究所製備電化學尿蛋白感測器,以牛血清白蛋白(bovine serum albumin, BSA)為待測物,利用循環伏安法(CV)探討不同濃度之白蛋白溶液的峰電流。
在2,2'-聯氮-雙(3-乙基苯并噻唑啉-6-磺酸) (2,2’-azino-bis(3-ethyl-
benzothiazoline-6-sulfonic acid), ABTS)分別與兩種不同碳材混摻所成的修飾電極,並將其浸泡於溫度25oC、pH 6.5的白蛋白緩衝溶液中1小時後使用循環伏安法分析。結果顯示ABTS混摻多壁奈米碳管的靈敏度(0.520 μA/ppm)為ABTS混摻碳黑(0.180 μA/ppm)的2.89倍,而且比較不受背景電流干擾;感測濃度範圍皆為0-200 ppm。
在上述條件之下,多壁奈米碳管混摻ABTS為修飾電極的電化學反應為吸附控制。吸附時的攪拌靈敏度可以從0.520 μA/ppm提高到2.633 μA/ppm。在無攪拌的系統中,溶液溫度從25oC改變到35oC,靈敏度從0.520 μA/ppm 增加至1.533 μA/ppm。
多壁奈米碳管混摻ABTS為修飾電極含浸在溫度25oC的白蛋白緩衝溶液中1小時,隨著電解液的pH由4增加到6.5、8與10時,靈敏度由0.196 μA/ppm改變到0.520 μA/ppm、0.463 μA/ppm與0.044 μA/ppm。
To fabricate a modified electrode, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was blended with one of two carbon materials: multi-wall carbon nanotube (MWCNT) and carbon black (XC-72). According to the experiment results, when the modified electrodes were soaked in a BSA solution of pH 6.5 at 25oC for one hour, the sensitivity of ABTS/MWCNT modified electrode (0.520 μA/ppm) was 2.89 times as much as that of ABTS/XC-72 modified electrode (0.180 μA/ppm). Their detection range was the same between 0 and 200 ppm. Under the above condition, the electrochemical reaction of BSA was controlled by the adsorption on the surface of ABTS/MWCNT modified electrode. During adsorption period, agitation increased the sensitivity from 0.520 to 2.633 μA/ppm. Sensitivity increased from 0.520 to 1.533 μA/ppm when electrolyte temperature increased from 25oC to 35oC. As the pH increased from 4, the sensitivity of the ABTS/MWCNT modified electrode increased from 0.196 μA/ppm to 0.520 μA/ppm at pH 6.5, then decreased to 0.044 μA/ppm at pH 10, after soaking in the BSA solution at 25oC for one hour.
[1] 衛生福利部, http://www.mohw.gov.tw/news/531349778, 2015.
[2] 中華民國內政部戶政司, http://www.ris.gov.tw/zh_TW/346, 2015.
[3] 張正忠, "一般泌尿科學," 合作出版社, 1987
[4] J. A. Simerville, W. C. Maxted, and J. J. Pahira, "Urinalysis: a comprehensive review," Am Fam Physician, vol. 71, p. 1153-62, 2005.
[5] 曾永德, "臨床鏡檢學," 藝軒圖書出版社, p. 23-103, 2004.
[6] J. X. Pang, N. Ginanni, A. R. Dongre, S. A. Hefta, and G. J. Opiteck, "Biomarker discovery in urine by proteomics," Journal of proteome research, vol. 1, p. 161-169, 2002.
[7] 李欣峰, "白蛋白感測晶片與居家型恆電位電流儀之整合研究," 崑山科技大學碩士論文, 2006.
[8] 鐘文冠, "腎炎," 書泉出版社, 2009.
[9] 蘇裕謀, "腎臟疾病處方判斷及處置," 台北醫學大學, 2010.
[10] D. C. Scheid, L. H. McCarthy, F. H. Lawler, R. M. Hamm, and K. E. Reilly, "Screening for microalbuminuria to prevent nephropathy in patients with diabetes: a systematic review of the evidence," Journal of Family Practice, vol. 50, p. 661-661, 2001.
[11] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, vol. 102, p. 29-45, 1962.
[12] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley & Sons, 2005.
[13] J. W. Berthold III, "Historical review of microbend fiber optic sensors," in 10th Optical Fibre Sensors Conference, 1994, p. 182-186.
[14] 楊婉鈴, 李博仁, 陳逸聰, "無標記奈米級生物感測器," 化學, vol. 69, p. 199-209, 2011.
[15] 陳旻政, 林家毅, 林昌賢, "奈米線場效電晶體平台製作及生物分子感測," 奈米通訊, vol. 18, p. 37-43, 2011.
[16] 杜振豪, "以電鍍法製作氧化鋅奈米柱陣列做為EGFET葡萄糖感測膜," 國立清華大學碩士論文, 2011.
[17] R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta, vol. 46, p. 1223-1236, 1998.
[18] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
[19] U. E. Spichiger-Keller, Chemical sensors and biosensors for medical and biological applications: John Wiley & Sons, 2008.
[20] 胡啟章, "電化學原理與方法," 五南圖書出版公司, 2002.
[21] X. Niu, W. Yang, H. Guo, J. Ren, F. Yang, and J. Gao, "A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode," Talanta, vol. 99, p. 984-988, 2012.
[22] W. Zhang, Y. Tang, J. Liu, Y. Ma, L. Jiang, W. Huang, et al., "An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite," Journal of Materials Chemistry B, vol. 2, p. 8490-8495, 2014.
[23] L. Fotouhi, M. Fatollahzadeh, and M. M. Heravi, "Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube," Int. J. Electrochem. Sci, vol. 7, p. 3919-3928, 2012.
[24] 陸瑞東, "以聯氨還原製備質子交換膜燃料電池鉑 鎳/碳陰極之研究," 國立成功大學博士論文, 2005.
[25] 林賜岱, "直接甲醇燃料電池陽極反應之研究," 國立台灣科技大學, 2002.
[26] K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical chemistry, 4th ed. Boston: Houghton Mifflin, 2003.
[27] D. M. Ruthven, Principles of adsorption and adsorption processes: John Wiley & Sons, 1984.
[28] S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, p. 309-319, 1938.
[29] J. Brown, "Structure of bovine serum albumin," in Fed. Proc, 1975, p. b9.
[30] T. Peters, R. C. Feldhoff, and R. G. Reed, "Immunochemical studies of fragments of bovine serum albumin," Journal of Biological Chemistry, vol. 252, p. 8464-8468, 1977.
[31] L. Pauling, R. B. Corey, and H. R. Branson, "The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain," Proceedings of the National Academy of Sciences, vol. 37, p. 205-211, 1951.
[32] L. Pauling and R. B. Corey, "Configurations of polypeptide chains with favored orientations around single bonds two new pleated sheets," Proceedings of the National Academy of Sciences, vol. 37, p. 729-740, 1951.
[33] https://smallcollation.blogspot.tw/2013/03/protein-sturcture.html#gsc.tab=0.
[34] S. ERA, K. B. ITOH, M. SOGAMI, K. KUWATA, T. IWAMA, H. YAMADA, et al., "Structural transition of bovine plasma albumin in the alkaline region the N‐B transition," International journal of peptide and protein research, vol. 35, p. 1-11, 1990.
[35] M. Dockal, D. C. Carter, and F. Rüker, "Conformational transitions of the three recombinant domains of human serum albumin depending on pH," Journal of Biological Chemistry, vol. 275, p. 3042-3050, 2000.
[36] S. ERA, H. ASHIDA, S. NAGAOKA, H. INOUYE, and M. SOGAMI, "CD‐resolved secondary structure of bovine plasma albumin in acid‐induced isomerization," International journal of peptide and protein research, vol. 22, p. 333-340, 1983.
[37] M. Y. Khan, "Direct evidence for the involvement of domain III in the NF transition of bovine serum albumin," Biochemical journal, vol. 236, p. 307-310, 1986.
[38] H. W. Wang, F. F. Ren, C. Q. Wang, B. B. Yang, D. Bin, K. Zhang, et al., "Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide," Rsc Advances, vol. 4, p. 26895-26901, 2014.
[39] W. Shen, Z. Li, and Y. Liu, "Surface chemical functional groups modification of porous carbon," Recent Patents on Chemical Engineering, vol. 1, p. 27-40, 2008.
[40] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56-58, 1991.
[41] 黃淑娟, 郭信良, 劉易昌, 葉裕洲, "新碳材時代-從奈米碳管到石墨烯," 工業材料雜誌, vol. 291, 2011.
[42] S. Alwarappan, G. Liu, and C.-Z. Li, "Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 6, p. 52-57, 2010.
[43] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, p. 666-669, 2004.
[44] S. Amelinckx, D. Bernaerts, X. Zhang, G. Van Tendeloo, and J. Van Landuyt, "A structure model and growth mechanism for multishell carbon nanotubes," Science, vol. 267, p. 1334, 1995.
[45] T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, and T. Thio, "Electrical-conductivity of individual carbon nanotubes," Nature, vol. 382, p. 54-56, 1996.
[46] O. Zhou, R. Fleming, D. Murphy, C. Chen, R. Haddon, A. Ramirez, et al., "Defects in carbon nanostructures," Science, vol. 263, p. 1744-1747, 1994.
[47] T. Nakaminami, S.-i. Ito, S. Kuwabata, and H. Yoneyama, "Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer," Analytical chemistry, vol. 71, p. 1928-1934, 1999.
[48] T. Nakaminami, S.-i. Ito, S. Kuwabata, and H. Yoneyama, "A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid," Analytical chemistry, vol. 71, p. 4278-4283, 1999.
[49] W. E. Farneth, B. A. Diner, T. D. Gierke, and M. B. D’Amore, "Current densities from electrocatalytic oxygen reduction in laccase/ABTS solutions," Journal of Electroanalytical Chemistry, vol. 581, p. 190-196, 2005.
[50] J. H. Thomas, J. M. Drake, J. R. Paddock, S. Conklin, J. Johnson, C. J. Seliskar, et al., "Characterization of ABTS at a Polymer‐Modified Electrode," Electroanalysis, vol. 16, p. 547-555, 2004.
[51] S. Calabrese Barton, J. Gallaway, and P. Atanassov, "Enzymatic biofuel cells for implantable and microscale devices," Chemical reviews, vol. 104, p. 4867-4886, 2004.
[52] K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, et al., "ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen," Analytical chemistry, vol. 80, p. 7643-7648, 2008.
[53] D. Metelitza, A. Eryomin, D. Sviridov, and V. Kamyshnikov, "Initiation and Inhibition of Free Radical Processes in H2O2–Metmyoglobin (Methemoglobin)–2, 2"-Azino-bis-(3-Ethylbenzthiazoline-6-Sulfonic Acid) Systems," Biochemistry (Moscow), vol. 66, p. 505-514, 2001.
[54] R. Bourbonnais, D. Leech, and M. G. Paice, "Electrochemical analysis of the interactions of laccase mediators with lignin model compounds," Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1379, p. 381-390, 1998.
[55] F.-D. Munteanu, C. Basto, G. M. Gübitz, and A. Cavaco-Paulo, "Staining of wool using the reaction products of ABTS oxidation by Laccase: Synergetic effects of ultrasound and cyclic voltammetry," Ultrasonics sonochemistry, vol. 14, p. 363-367, 2007.
[56] E. M. Damsgaard, A. Frøland, O. D. Jørgensen, and C. E. Mogensen, "Microalbuminuria as predictor of increased mortality in elderly people," Bmj, vol. 300, p. 297-300, 1990.
[57] H.-J. Chen, Z.-H. Zhang, L.-J. Luo, and S.-Z. Yao, "Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin," Sensors and Actuators B: Chemical, vol. 163, p. 76-83, 2012.
[58] D. Caballero, E. Martinez, J. Bausells, A. Errachid, and J. Samitier, "Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface," Analytica chimica acta, vol. 720, p. 43-48, 2012.
[59] K. L. Prime and G. M. Whitesides, "Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers," Journal of the American Chemical Society, vol. 115, p. 10714-10721, 1993.
[60] D. H. Kwon, H. H. An, H.-S. Kim, J. H. Lee, S. H. Suh, Y. H. Kim, et al., "Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles," Applied surface science, vol. 257, p. 4650-4654, 2011.
[61] 李佳錚, "自組裝單層膜修飾電極在尿蛋白生醫感測之應用," 國立成功大學碩士論文, 2009.
[62] 曾郁皓, "以硫醇修飾之金電極及其在尿蛋白生醫感測之應用," 國立成功大學碩士論文, 2011.
[63] H. J. Chen, Z. H. Zhang, D. Xie, R. Cai, X. Chen, Y. N. Liu, et al., "Surface‐Imprinting Sensor Based on Carbon Nanotubes/Graphene Composite for Determination of Bovine Serum Albumin," Electroanalysis, vol. 24, p. 2109-2116, 2012.
[64] Y.-S. Chen and J.-H. Huang, "Electrochemical sensing of bovine serum albumin at self-assembled SWCNTs on gold," Diamond and Related Materials, vol. 18, p. 516-519, 2009.
[65] L. Peng, C. Li, H. Xue, and G. Zhan, "Ultrasensitive determination of serum albumin using resonance light scattering based on ZnS-polyacrylic acid nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 75, p. 1497-1500, 2010.
[66] X. Xu, J. Huang, J. Li, J. Yan, J. Qin, and Z. Li, "A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin," Chemical Communications, vol. 47, p. 12385-12387, 2011.