簡易檢索 / 詳目顯示

研究生: 吳俊逸
Wu, Jyun-Yi
論文名稱: 2,2, 聯氮-雙(3-乙基苯并噻唑啉-6-磺酸)修飾奈米碳管電極在尿蛋白感測之研究
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)-Modified Carbon Nanotube Electrodes for Albumin Sensing in Urine
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 136
中文關鍵詞: 牛血清白蛋白ABTS循環伏安法感測白蛋白
外文關鍵詞: ABTS, Bovine serum albumin, Cyclic voltammetry, Sensing BSA
相關次數: 點閱:148下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體尿蛋白在腎炎與腎病變診斷扮演重要的角色,尿蛋白的自我檢測可以達到預防勝於治療效果。本研究所製備電化學尿蛋白感測器,以牛血清白蛋白(bovine serum albumin, BSA)為待測物,利用循環伏安法(CV)探討不同濃度之白蛋白溶液的峰電流。
    在2,2'-聯氮-雙(3-乙基苯并噻唑啉-6-磺酸) (2,2’-azino-bis(3-ethyl-
    benzothiazoline-6-sulfonic acid), ABTS)分別與兩種不同碳材混摻所成的修飾電極,並將其浸泡於溫度25oC、pH 6.5的白蛋白緩衝溶液中1小時後使用循環伏安法分析。結果顯示ABTS混摻多壁奈米碳管的靈敏度(0.520 μA/ppm)為ABTS混摻碳黑(0.180 μA/ppm)的2.89倍,而且比較不受背景電流干擾;感測濃度範圍皆為0-200 ppm。
    在上述條件之下,多壁奈米碳管混摻ABTS為修飾電極的電化學反應為吸附控制。吸附時的攪拌靈敏度可以從0.520 μA/ppm提高到2.633 μA/ppm。在無攪拌的系統中,溶液溫度從25oC改變到35oC,靈敏度從0.520 μA/ppm 增加至1.533 μA/ppm。
    多壁奈米碳管混摻ABTS為修飾電極含浸在溫度25oC的白蛋白緩衝溶液中1小時,隨著電解液的pH由4增加到6.5、8與10時,靈敏度由0.196 μA/ppm改變到0.520 μA/ppm、0.463 μA/ppm與0.044 μA/ppm。

    To fabricate a modified electrode, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was blended with one of two carbon materials: multi-wall carbon nanotube (MWCNT) and carbon black (XC-72). According to the experiment results, when the modified electrodes were soaked in a BSA solution of pH 6.5 at 25oC for one hour, the sensitivity of ABTS/MWCNT modified electrode (0.520 μA/ppm) was 2.89 times as much as that of ABTS/XC-72 modified electrode (0.180 μA/ppm). Their detection range was the same between 0 and 200 ppm. Under the above condition, the electrochemical reaction of BSA was controlled by the adsorption on the surface of ABTS/MWCNT modified electrode. During adsorption period, agitation increased the sensitivity from 0.520 to 2.633 μA/ppm. Sensitivity increased from 0.520 to 1.533 μA/ppm when electrolyte temperature increased from 25oC to 35oC. As the pH increased from 4, the sensitivity of the ABTS/MWCNT modified electrode increased from 0.196 μA/ppm to 0.520 μA/ppm at pH 6.5, then decreased to 0.044 μA/ppm at pH 10, after soaking in the BSA solution at 25oC for one hour.

    摘要 I 致謝 XII 目錄 XIV 圖目錄 XIX 表目錄 XXVIII 符號說明 XXX 第一張 緒論 1 1.1 前言 1 1.2 泌尿系統及相關疾病 3 1.2.1泌尿器官及其功能 3 1.2.2 尿液的基本介紹 3 1.2.3 尿液檢測 4 1.2.4 腎臟病與蛋白尿之關係 6 1.3 感測器 7 1.3.1 生醫感測器 8 1.3.1.1場效電晶體生物感測器 9 1.3.1.2 壓電晶體生醫感測器 12 1.3.1.3 光纖生醫感測器 12 1.3.1.4 電化學式生物感測器 13 第二章 原理與文獻回顧 18 2.1 電化學原理 18 2.1.1循環伏安法 20 2.1.2微分脈衝伏安分析原理 25 2.1.3交流阻抗分析 26 2.2 吸附理論 34 2.2.1 Langmuir等溫吸附式 35 2.2.2 BET等溫吸附式 38 2.3 蛋白質 39 2.3.1 一級結構 39 2.3.2 二級結構 40 2.3.3 三級結構 42 2.3.4 四級結構 42 2.3.5 環境對蛋白質結構影響 43 2.4 碳材 45 2.4.1 碳黑 45 2.4.2 奈米碳管 46 2.5 電子傳遞物 48 2.6 研究動機 50 第三章 實驗藥品及步驟 52 3.1 藥品與儀器設備 52 3.1.1 藥品 52 3.1.2 儀器設備 53 3.2 藥品與溶液配製 54 3.3 實驗步驟 56 3.3.1 感測電極製備 56 3.3.2 感測電極之電化學系統 57 3.3.3 感測電極前處理 59 3.4 白蛋白吸附實驗 59 3.4.1 ABTS電化學分析 60 3.4.2 修飾電極吸附白蛋白 60 第四章 結果與討論 62 4.1 ABTS電化學行為 63 4.1.1 ABTS的循環伏安分析 63 4.1.2 ABTS溶在磷酸鹽緩衝溶液裡 66 4.1.3 小結 67 4.2 電極修飾方法對白蛋白感測能力影響 68 4.2.1 碳黑混摻ABTS的效果 68 4.2.2 碳黑混摻ABTS與多壁奈米碳管混摻ABTS之比較 71 4.2.3 ABTS存在方式在多壁奈米碳管上感測行為 75 4.2.4 微分脈衝伏安法分析 81 4.2.5 交流阻抗分析 84 4.3 多壁奈米碳管修飾與感測條件的影響 85 4.3.1 掃描速率對感測能力影響 85 4.3.2 吸附時間影響 89 4.3.3 吸附電壓與攪拌影響 96 4.3.4 吸附溫度影響 108 4.3.5 測試液酸鹼值影響 113 4.3.6 以細胞粉碎機分散多壁奈米碳管與ABTS 117 4.3.7 干擾物影響 123 4.3.8 反應機構 124 第五章 結論 129 參考文獻 131

    [1] 衛生福利部, http://www.mohw.gov.tw/news/531349778, 2015.
    [2] 中華民國內政部戶政司, http://www.ris.gov.tw/zh_TW/346, 2015.
    [3] 張正忠, "一般泌尿科學," 合作出版社, 1987
    [4] J. A. Simerville, W. C. Maxted, and J. J. Pahira, "Urinalysis: a comprehensive review," Am Fam Physician, vol. 71, p. 1153-62, 2005.
    [5] 曾永德, "臨床鏡檢學," 藝軒圖書出版社, p. 23-103, 2004.
    [6] J. X. Pang, N. Ginanni, A. R. Dongre, S. A. Hefta, and G. J. Opiteck, "Biomarker discovery in urine by proteomics," Journal of proteome research, vol. 1, p. 161-169, 2002.
    [7] 李欣峰, "白蛋白感測晶片與居家型恆電位電流儀之整合研究," 崑山科技大學碩士論文, 2006.
    [8] 鐘文冠, "腎炎," 書泉出版社, 2009.
    [9] 蘇裕謀, "腎臟疾病處方判斷及處置," 台北醫學大學, 2010.
    [10] D. C. Scheid, L. H. McCarthy, F. H. Lawler, R. M. Hamm, and K. E. Reilly, "Screening for microalbuminuria to prevent nephropathy in patients with diabetes: a systematic review of the evidence," Journal of Family Practice, vol. 50, p. 661-661, 2001.
    [11] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, vol. 102, p. 29-45, 1962.
    [12] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley & Sons, 2005.
    [13] J. W. Berthold III, "Historical review of microbend fiber optic sensors," in 10th Optical Fibre Sensors Conference, 1994, p. 182-186.
    [14] 楊婉鈴, 李博仁, 陳逸聰, "無標記奈米級生物感測器," 化學, vol. 69, p. 199-209, 2011.
    [15] 陳旻政, 林家毅, 林昌賢, "奈米線場效電晶體平台製作及生物分子感測," 奈米通訊, vol. 18, p. 37-43, 2011.
    [16] 杜振豪, "以電鍍法製作氧化鋅奈米柱陣列做為EGFET葡萄糖感測膜," 國立清華大學碩士論文, 2011.
    [17] R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta, vol. 46, p. 1223-1236, 1998.
    [18] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
    [19] U. E. Spichiger-Keller, Chemical sensors and biosensors for medical and biological applications: John Wiley & Sons, 2008.
    [20] 胡啟章, "電化學原理與方法," 五南圖書出版公司, 2002.
    [21] X. Niu, W. Yang, H. Guo, J. Ren, F. Yang, and J. Gao, "A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode," Talanta, vol. 99, p. 984-988, 2012.
    [22] W. Zhang, Y. Tang, J. Liu, Y. Ma, L. Jiang, W. Huang, et al., "An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite," Journal of Materials Chemistry B, vol. 2, p. 8490-8495, 2014.
    [23] L. Fotouhi, M. Fatollahzadeh, and M. M. Heravi, "Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube," Int. J. Electrochem. Sci, vol. 7, p. 3919-3928, 2012.
    [24] 陸瑞東, "以聯氨還原製備質子交換膜燃料電池鉑 鎳/碳陰極之研究," 國立成功大學博士論文, 2005.
    [25] 林賜岱, "直接甲醇燃料電池陽極反應之研究," 國立台灣科技大學, 2002.
    [26] K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical chemistry, 4th ed. Boston: Houghton Mifflin, 2003.
    [27] D. M. Ruthven, Principles of adsorption and adsorption processes: John Wiley & Sons, 1984.
    [28] S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, p. 309-319, 1938.
    [29] J. Brown, "Structure of bovine serum albumin," in Fed. Proc, 1975, p. b9.
    [30] T. Peters, R. C. Feldhoff, and R. G. Reed, "Immunochemical studies of fragments of bovine serum albumin," Journal of Biological Chemistry, vol. 252, p. 8464-8468, 1977.
    [31] L. Pauling, R. B. Corey, and H. R. Branson, "The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain," Proceedings of the National Academy of Sciences, vol. 37, p. 205-211, 1951.
    [32] L. Pauling and R. B. Corey, "Configurations of polypeptide chains with favored orientations around single bonds two new pleated sheets," Proceedings of the National Academy of Sciences, vol. 37, p. 729-740, 1951.
    [33] https://smallcollation.blogspot.tw/2013/03/protein-sturcture.html#gsc.tab=0.
    [34] S. ERA, K. B. ITOH, M. SOGAMI, K. KUWATA, T. IWAMA, H. YAMADA, et al., "Structural transition of bovine plasma albumin in the alkaline region the N‐B transition," International journal of peptide and protein research, vol. 35, p. 1-11, 1990.
    [35] M. Dockal, D. C. Carter, and F. Rüker, "Conformational transitions of the three recombinant domains of human serum albumin depending on pH," Journal of Biological Chemistry, vol. 275, p. 3042-3050, 2000.
    [36] S. ERA, H. ASHIDA, S. NAGAOKA, H. INOUYE, and M. SOGAMI, "CD‐resolved secondary structure of bovine plasma albumin in acid‐induced isomerization," International journal of peptide and protein research, vol. 22, p. 333-340, 1983.
    [37] M. Y. Khan, "Direct evidence for the involvement of domain III in the NF transition of bovine serum albumin," Biochemical journal, vol. 236, p. 307-310, 1986.
    [38] H. W. Wang, F. F. Ren, C. Q. Wang, B. B. Yang, D. Bin, K. Zhang, et al., "Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide," Rsc Advances, vol. 4, p. 26895-26901, 2014.
    [39] W. Shen, Z. Li, and Y. Liu, "Surface chemical functional groups modification of porous carbon," Recent Patents on Chemical Engineering, vol. 1, p. 27-40, 2008.
    [40] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56-58, 1991.
    [41] 黃淑娟, 郭信良, 劉易昌, 葉裕洲, "新碳材時代-從奈米碳管到石墨烯," 工業材料雜誌, vol. 291, 2011.
    [42] S. Alwarappan, G. Liu, and C.-Z. Li, "Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 6, p. 52-57, 2010.
    [43] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, p. 666-669, 2004.
    [44] S. Amelinckx, D. Bernaerts, X. Zhang, G. Van Tendeloo, and J. Van Landuyt, "A structure model and growth mechanism for multishell carbon nanotubes," Science, vol. 267, p. 1334, 1995.
    [45] T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, and T. Thio, "Electrical-conductivity of individual carbon nanotubes," Nature, vol. 382, p. 54-56, 1996.
    [46] O. Zhou, R. Fleming, D. Murphy, C. Chen, R. Haddon, A. Ramirez, et al., "Defects in carbon nanostructures," Science, vol. 263, p. 1744-1747, 1994.
    [47] T. Nakaminami, S.-i. Ito, S. Kuwabata, and H. Yoneyama, "Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer," Analytical chemistry, vol. 71, p. 1928-1934, 1999.
    [48] T. Nakaminami, S.-i. Ito, S. Kuwabata, and H. Yoneyama, "A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid," Analytical chemistry, vol. 71, p. 4278-4283, 1999.
    [49] W. E. Farneth, B. A. Diner, T. D. Gierke, and M. B. D’Amore, "Current densities from electrocatalytic oxygen reduction in laccase/ABTS solutions," Journal of Electroanalytical Chemistry, vol. 581, p. 190-196, 2005.
    [50] J. H. Thomas, J. M. Drake, J. R. Paddock, S. Conklin, J. Johnson, C. J. Seliskar, et al., "Characterization of ABTS at a Polymer‐Modified Electrode," Electroanalysis, vol. 16, p. 547-555, 2004.
    [51] S. Calabrese Barton, J. Gallaway, and P. Atanassov, "Enzymatic biofuel cells for implantable and microscale devices," Chemical reviews, vol. 104, p. 4867-4886, 2004.
    [52] K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, et al., "ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen," Analytical chemistry, vol. 80, p. 7643-7648, 2008.
    [53] D. Metelitza, A. Eryomin, D. Sviridov, and V. Kamyshnikov, "Initiation and Inhibition of Free Radical Processes in H2O2–Metmyoglobin (Methemoglobin)–2, 2"-Azino-bis-(3-Ethylbenzthiazoline-6-Sulfonic Acid) Systems," Biochemistry (Moscow), vol. 66, p. 505-514, 2001.
    [54] R. Bourbonnais, D. Leech, and M. G. Paice, "Electrochemical analysis of the interactions of laccase mediators with lignin model compounds," Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1379, p. 381-390, 1998.
    [55] F.-D. Munteanu, C. Basto, G. M. Gübitz, and A. Cavaco-Paulo, "Staining of wool using the reaction products of ABTS oxidation by Laccase: Synergetic effects of ultrasound and cyclic voltammetry," Ultrasonics sonochemistry, vol. 14, p. 363-367, 2007.
    [56] E. M. Damsgaard, A. Frøland, O. D. Jørgensen, and C. E. Mogensen, "Microalbuminuria as predictor of increased mortality in elderly people," Bmj, vol. 300, p. 297-300, 1990.
    [57] H.-J. Chen, Z.-H. Zhang, L.-J. Luo, and S.-Z. Yao, "Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin," Sensors and Actuators B: Chemical, vol. 163, p. 76-83, 2012.
    [58] D. Caballero, E. Martinez, J. Bausells, A. Errachid, and J. Samitier, "Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface," Analytica chimica acta, vol. 720, p. 43-48, 2012.
    [59] K. L. Prime and G. M. Whitesides, "Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers," Journal of the American Chemical Society, vol. 115, p. 10714-10721, 1993.
    [60] D. H. Kwon, H. H. An, H.-S. Kim, J. H. Lee, S. H. Suh, Y. H. Kim, et al., "Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles," Applied surface science, vol. 257, p. 4650-4654, 2011.
    [61] 李佳錚, "自組裝單層膜修飾電極在尿蛋白生醫感測之應用," 國立成功大學碩士論文, 2009.
    [62] 曾郁皓, "以硫醇修飾之金電極及其在尿蛋白生醫感測之應用," 國立成功大學碩士論文, 2011.
    [63] H. J. Chen, Z. H. Zhang, D. Xie, R. Cai, X. Chen, Y. N. Liu, et al., "Surface‐Imprinting Sensor Based on Carbon Nanotubes/Graphene Composite for Determination of Bovine Serum Albumin," Electroanalysis, vol. 24, p. 2109-2116, 2012.
    [64] Y.-S. Chen and J.-H. Huang, "Electrochemical sensing of bovine serum albumin at self-assembled SWCNTs on gold," Diamond and Related Materials, vol. 18, p. 516-519, 2009.
    [65] L. Peng, C. Li, H. Xue, and G. Zhan, "Ultrasensitive determination of serum albumin using resonance light scattering based on ZnS-polyacrylic acid nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 75, p. 1497-1500, 2010.
    [66] X. Xu, J. Huang, J. Li, J. Yan, J. Qin, and Z. Li, "A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin," Chemical Communications, vol. 47, p. 12385-12387, 2011.

    下載圖示 校內:2018-08-08公開
    校外:2018-08-08公開
    QR CODE