| 研究生: |
李朝欽 Lee, Chaur-Chin |
|---|---|
| 論文名稱: |
環境效應對表面電漿共振感測機制之影響 The Influence Of Ambient Conditions Change On The Optical Behaviors Of Surface Plasmon Resonance Biosensor |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 表面電漿共振 |
| 外文關鍵詞: | surface plasmon resonance |
| 相關次數: | 點閱:121 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
表面電漿共振感測技術可偵測金屬與介電質層間界面之物理及化學微量變化。對於金屬表面鄰近之介電材料,表面電漿共振與該介電常數之微量變化有極佳之靈敏度。應用於光學感測器在許多方面之應用上,皆可提供相當不錯之靈敏度。這些應用諸如氣體化學感測、生物感測與雷射切割之即時觀測等等。對於貴金屬而言,表面電漿共振感測之反射比曲線於可見光/紅外光頻譜間將會出現非常陡峭之現象,此乃表面電漿共振之共振條件對於環境效應有著莫大之靈敏度。尤其深受感測環境溫度變化之影響。溫度上升時,將致使靈敏度變差。本文將建立一套以表面電漿共振為感測機制之光學式生物感測界面,且該靈敏度為溫度函數之理論模型。此理論模型可提供預測表面電漿共振之靈敏度隨溫度變化的情形。經由數值分析所得結果,可得到環境溫度變化與各膜層折射率與膜厚間之關係,進而瞭解對表面電漿共振感測靈敏度之影響。
Abstract
Surface plasmon resonance is a relatively simple but powerful optical technique that is capable of monitoring chemical and physical process at metal-dielectric interface in situ. Surface plasmon resonance is exquisitely sensitive to small changes in the dielectric constant near a metal surface. It is well established that the optical sensor based on the surface plasmon resonance at a metal-dielectric interface can provide a very high sensitivity for many applications. These applications include, for example, gas and chemical sensing, biosensing, a real-time monitoring of laser-ablation processes. The reflectance curve can be very steep for noble metals at visible/IR frequencies since the SPR resonance condition is highly sensitive to the ambient conditions. Especially, it is known that the sensitivity is affected by the variation of temperature of the sensing environment. It generally leads to lower sensitivity at elevated temperatures. In this thesis, a theoretical model is developed for to investigate the temperature–dependent sensitivity of the optical biosensing based on surface plasmon resonance. Moreover, the influences of refractive index and thickness of each thin film due to variation of environmental temperature upon SPR sensitivity are evaluated and discussed.
文獻
[1] R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum. ”, Phil. Magm. 4, pp. 396-402 (1902).
[2] E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmon excited by light. ”, Z. Naturforsch. 23A, pp. 2135-2136 (1968).
[3] A. Otto, “Excitataion of surface plasma waves in silver by the method of frustrated total reflection. ”, Z. Physik 216, pp. 398-410 (1968).
[4] C. Nylander, B. Liedberg and T. Lind ,“Gas detection by means of surface plasmon resonance. “, Sensors and Actuators, Vol. 3, pp. 79-88 (1982).
[5] B. Liedberg, C. Nylander, and I. Lundstörm ,“Surface plasmon resonance for gas detection and biosensing. “, Sensors and Actuators 4, pp. 299-304 (1983).
[6] B. Liedberg, C. Nylander, and I. Lundstörm ,“Biosensing with surface plasmon resonance-how it all started. “, Biosensors Bioelectron. 10, pp. i-ix (1995).
[7] http://www.BIOcore.com/
[8] http://www.quantech.com/
[9] L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance. “, Electron. Lett., Vol. 23, pp.1469-1470 (1988).
[10] Y.C. Cheng, W.K. Su and J.H. Liou, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. “, Opt. Eng. Vol. 39, No. 1, pp. 311-314, 2000.
[11] S.G. Nelson, K.S. Johnston and S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection. “, Sensors and Actuators B, Vol. 35-36, pp. 187-191 (1996).
[12] P.I. Nikitin, A.A. Beloglazov, M.V. Creighton, A.M. Smith, N.A. Sommerdijk and J.D. Wright, “Silicon-based surface plasmon resonance combined with surface-enhanced Raman scattering for chemical sensing. “, Rev. Sci. Instrum., Vol. 68, No. 6, pp. 2554-2557 (1997).
[13] A.A. Kruchinin and Y.G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor. “, Sensors and Actuators B, Vol. 30, pp. 77-80 (1996).
[14] http://www.geocities.com/neveyaakov/spr.htm
[15] http://www.biacore.com/products/systemsandsoftware/systems.lasso
[16] H. GUCKEL, “High-Aspect-Ratio Micromachining Via Deep X-Ray Litho–graphy”, Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593 (1998)
[17] http://www.genemaster.com.tw/
[18] http://syli34.physik.uni-bonn.de/rtlplus.html
[19] http://www.exitechinc.com/tools_frame.htm
[20] Gregory T. A. Kovacs et al., “Bulk Micromachining of Silicon.”, Proc. of the IEEE, Vol. 86, No. 8, pp. 1536-1551 (1998)
[21] http://www.speculationpress.com/weirdsci.htm
[22] http://www.spie.org/web/oer/march/mar00/biochips.html
[23] http://www.motorola.com/lifesciences/esensor/tech_biochips.html
[24] http://www.uol.com.br/cienciahoje/chdia/n246.htm
[25] http://www.packardbioscience.com/products/products.asp?content_item_id=331
[26] http://www.joowon.co.kr/bbmain1.htm
[27] http://www.cbu.edu/~jvarrian/122/emwave.gif
[28] http://www.phy.ncku.edu.tw/~astrolab/e_book/telescopes/captions/emwave_spectrum.html
[29] http://www.phys.ncku.edu.tw/~astrolab/e_book/lite_secret/captions/em_spectrum.html
[30] http://micro.magnet.fsu.edu/primer/techniques/fluorescence/tirf/tirfintro.html
[31] http://www.cpac.washington.edu/~campbell/projects/spr.html
[32] http://www.joowon.co.kr/bbmain1.htm (Biochips & Cartridges in Korea).
[33] http://www.geocities.com/neveyaakov/spr.htm
[34] http://plazmon.ure.cas.cz/~jakub/spr/spr.html
[35] Heinz Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings.”, Springer-Verlag, Berlin Heidelberg, Germany (1988).
[36] http://www.ti.com/sc/docs/products/msp/control/spreeta/analysis.htm
[37] http://www.ee.ucla.edu/~pbmuri/1999-review/vuckovic/sld003.htm
[38] K. Matsubara, S. Kawata, and S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process.”, Applied Spectroscopy, Vol. 42, No.8, pp. 1375-1379 (1988).
[39] http://www.windsor-ltd.co.uk/ibis_spr.htm
[40] http://home.hccnet.nl/ja.marquart/basicspr/basicspr.htm
[41] J. P. Holman, “Heat transfer”, Fifth edition, McGraw-Hill (1981).
[42] A. K.Chu, H. C. Lin and W. H. Cheng and J. Electro. Master26, pp. 889 (1997).
[43] http://www.protein-solution.com/psi_books/light_scattering/statics/is_the_refractive_index_increment_d_dc_wavelength_dependent_.htm
[44] K. A. Peterlinz, R. Georgiadis, “Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy.”, Opt. Commun., Vol. 130, pp. 260-266 (1996).
[45] J. F. Nye, “Physical properties of crystals-their representation by tensors and matrices.”, Oxford Science Publication (1992).
[46] H. P. Chiang , Y. C. Wang, P. T. Leung, W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance.”, Opt. Commun., Vol. 188, pp. 283-289 (2001).
[47] S. Herminghaus, P. Liederer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime.”, Appl. Phys. Lett., Vol. 58, pp. 352 (1991).
[48] S. Herminghaus, P. Liederer, “Surface plasmon enhanced transient thermoreflectance.”, Appl. Phys. A 51, pp. 350-353 (1991).
[49] H. P. Chiang, P. T. Leung, W. S. Tse, “Optical properties of composite materials at high temperature.” Solid State Commun. Vol. 101, No. 1, pp. 45-50 (1997).
[50] B. Pettinger, X. Boa, I. C. Wilcock, M. Muhler, G. Ertl, “Surface-Enhanced Raman Scattering from Surface and Subsurface Oxygen Species at Microscopically Well-Defined Ag Surfaces.”, Phys. Rev. Lett., Vol. 72, No. 10, pp. 1561-1564 (1994).
[51] J. A. McKay and J. A. Rayne, “Temperature dependence of the infrared absorptivity of the noble metal.”, Phys. Rev. B13, No. 2, pp. 673-685 (1976).
[52] W. E. Lawrence, “Electron-electron scattering in the low-temperature resistivity of the noble metal.”, Phys. Rev. B 13, No. 12, pp. 5316-5319 (1976).
[53] P. B. Johnson and R. W. Christy, “Optical constants of noble metals.”, Phys. Rev. B 6, No. 12, pp. 4370-4379 (1972).
[54] C. Kittel, “Introduction to Solid State Physics”, 4th ed., Wiley, New York (1971), pp. 248.
[55] G. K. White and S.B. Woods, Philos. Trans. R. Soc. Lond. A.251, pp. 273 (1958).
[56] R. P. H. Kooyman, H. Kolkman, J. van Gent, J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations.”, Anal. Chim. Acta., Vol. 213, pp. 35-45 (1988).
[57] J. Homola, I. Koudela, S.S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison.”, Sensors and Actuators B 54, pp. 16-24 (1999).
[58] http:// www.memsnet.org/material
[59] http:// www.webelements.com/webelements/elements/text/Au/phys.html
[60] http://www.able-tatsumi.com/tatsu_J/tatsu/table.html