| 研究生: |
楊詠欽 Yang, Yong-Qin |
|---|---|
| 論文名稱: |
三原子分子理想氣體擬似穩態馬赫反射三震波理論多重解初步的分析 A Preliminary Three-Shock Theoretical Analysis of Multiple Solutions of Pseudo-Steady Mach Reflections in Perfect Triatomic Gases |
| 指導教授: |
劉中堅
Liu, Jong-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 多重解 、三震波 、擬似穩態馬赫反射 |
| 相關次數: | 點閱:57 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文配合穩態馬赫反射流場三震波十次多重項式理論,有系統地探討三原子分子理想氣體 (r=1.2857 ) 擬似穩態馬赫反射流場三震波理論的多重解,及其於( Ms- θw) 平面上的多重解域,其中 Ms為入射震波馬赫數, θw為楔行斜平面角。我們首先在固定不同的 Ms情況下,變化 θw由0.01o到其超過馮努曼條件而進入逆馬赫反射止,計算分析( P − θ) 震波極圖上擬似穩態馬赫反射流場三震波理論之多重解暨其解行為的變化。本論文在此系列計算與分析的基礎上於( Ms- θw) 平面上建構此擬似穩態馬赫反射流場三震波理論的多重解域。本文主要有下列的結果(m為擬似穩態馬赫反射三震波多重解數目):
1、Wuest I三重根解曲線區隔了 m=0與 m=1的解域。
2、Wuest II 三重根解曲線在 Ms小於1.6914時,區隔了m =3與 m=2的解域,在 Ms大於1.6914時,區隔了m =1與 m=2的解域。
3、 B1=B2雙解曲線在Fall曲線左邊區隔了 m=1與 m=3的解域。
4、上述1-3的結果也就是說明了 m=3 ( a1, B1, B2) 係由於 B1=B2雙解曲線與Wuest II 三重根解曲線與 Ms= 0垂直軸所圍成的狹小的三邊形區域內。
5、 m=1的解域區分為兩個部分,當 Ms<Ms,fall 時其單解屬於 m=1 (a1 ), Ms>Ms,fall 時其單解屬於 m=1 ( B1)。
6、m =2的解域區分為兩個部分,當 Ms< Ms,fall時其雙解屬於m=2 ( a1、 B1), Ms>Ms,fall時其雙解屬於 (B1 、B2 )。
none
Ames Aeronautical Lab. Rep., “AMES Equations, Tables and Charts for Compressible Flow,” NASA, No. 1135, (1953).
Ben-Dor, G., “Shock Wave Reflection Phenomena,” Springer-Verlag,
New York, (1991).
Barbosa, F. and Skews, B. W., “Experimental Confirmation of the von Neumann Theory of Shock Wave Reflection Transition,” J. Fluid Mech., Vol. 472, pp. 263-283, (2002).
Chpoun, A., Passerel, D., Li, H. and Ben-Dor, G., “Reconsideration of Oblique Shock Wave Reflections in Steady Flows. Part 1. Experimental Investigation,” J. Fluid Mech., Vol. 301, pp. 19-35, (1995).
Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., Vol. 15, pp. 181-197, (1964).
Henderson, L. F. and Lozzi, A., “Further Experiments on Transition to Mach Reflection,” J. Fluid Mech., Vol. 94, pp. 541-560, (1979).
Henderson, L. F., “Regions and Boundaries for Diffracting Shock Wave Systems,” Z. Angew, Vol 67, pp. 1-14, (1987).
Hunter, j., Brio. M., “The von Neumann Paradox in Weak Shock Reflection,” J Fluid Mech., Vol. 422, pp. 193-205, (2000).
Kawamura, R. & Saito, H., “Reflection of Shock Waves – 1. Pseudo-Stationary Case,” J. Phys. Soc. Japan, Vol. 11, pp. 584-592, (1956).
Liu, J.J., “Sound Wave Structures Downstream of Pseudo-Steady
Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332, (1996).
Li, H., Chpoun, A. and Ben-Dor, G., “Analytical and Experimental Investigations of the Reflection of Asymmetric Shock Waves in Steady Flows,” J. Fluid Mech., Vol. 399, pp. 25-43, (1999).
Liu, J.J., “A one-dimensional stream-tube interpretation of Liu’s revised three-shock theory for pseudo-steady Mach reflections,” The 23 rd International symposium on shock Wave, Fort Worth, Texas. USA, (2001).
Liu, J.J., Chuang, C.C., Chuang, H.W., “Multiple Solutions of Steady Mach Reflections in Monatomic Gases,” The 19th Nat’l Conference on Mechanical Engineering, Yun-Lin, No. A5-004, (2002).
Liu, J.J., “Multiply Possible Three-Shock Theoretical Solutions of Steady Mach Reflections in Triatomic Perfect-Gases” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, pp. 105-111, (2003).
Mach, E., “Uber einige mechanische Wirkungen des electrischen Funkens, ” Akademie der Wissenschaften Wien, Vol. 77, No. II, pp. 819-838, (1878).
Neumann, J. von, “Oblique Reflection of Shocks,” Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, (1943).
Tskayama, K. and Ben-Dor, G., “The Inverse Mach Reflection,” AIAA Journal, Vol. 23, No. 12, (1985).
Wuest, W., “Zur Theorie des gegabelten Verdichtungatosse,” Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 3, pp. 73-80, (1948).
Zakharian AR, Brio M, Hunter JK, Webb GM “The von Neumann paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205, (2000).
石祐菘,「三原子分子氣體穩態馬赫反射現象之多重解理論初步的分析」,國立成功大學工程科學系碩士論文,台南 (2004)。
莊俊忠,「馬赫反射現象之理論探討」,國立成功大學工程科學系碩士論文,台南 (2002)。
莊鴻文,「多原子分子氣體擬似穩態馬赫反射流場之多重解理論分析:SF6」,國立成功大學工程科學系碩士論文,台南 (2003)。