簡易檢索 / 詳目顯示

研究生: 潘易霜
Pan, Yi-Shuang
論文名稱: 金屬氧化物在氧化矽表面的修飾及中孔碳材合成
Post-synthesis grafting of metal oxide onto mesoporous silica and synthesis of mesoporous carbon
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 中孔洞氧化矽表面修飾模板拓印方式金屬氧化物中孔洞碳材
外文關鍵詞: Metal Oxide, Mesoporous Silica, Mesoporous Carbon, Template Method, Surface Modification
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題有:(1)在於如何快速且有效地進行中孔洞氧化矽分子篩的表面修飾反應,進而利用已修飾Al2O3-氧化矽分子篩應用於中孔洞碳材的合成;(2)開發及改善其他合成中孔洞碳材的製備方法。

    在中孔洞氧化矽分子篩的表面修飾研究中,我們將初合成氧化矽材料直接進行金屬氧化物嫁接反應,在實驗過程中因界面活性劑存在於孔洞內部,可避免水氣儲存在孔洞中而引起金屬源與水氣進行縮合反應形成金屬氧化物顆粒的行為。且初合成氧化矽材料沒有經過560 ℃煅燒處理,其矽羥基(Si-OH)密度遠高於煅燒後的氧化矽材料,此方式有利金屬烷氧化合物(Al(i-OPr)3、Ti(n-OBu)4和VO(OPr)3)或金屬氯化物(AlCl3及FeCl3)在氧化矽表面的化學修飾反應,經修飾後的氧化矽材料在560 ℃煅燒後即形成金屬氧化物覆蓋於氧化矽表面之複合型中孔洞材料。

    在中孔洞碳材的研究中,分別以酚醛樹脂及呋喃醇當作碳源,並針對這兩種碳源的性質,分別以不同的方法製備中孔洞碳材。在酚醛樹脂的部分,由於酚醛樹脂是本實驗室合成中孔洞碳材最主要的碳源,所以先前的作法大都是以乾式含浸方式將酚醛樹脂導入煅燒後的中孔洞氧化矽中,但是中孔洞氧化矽其晶格結構及孔洞尺寸會因高溫煅燒過程而隨之緊縮。所以我們利用了高分子混摻原理(Polymer Blending),利用乙醇將部分P123中性界面活性劑從初合成中孔洞氧化矽中萃取溶出,同時再導入酚醛樹脂進入中孔洞氧化矽孔洞。如此一來,中孔洞氧化矽的晶格結構及孔洞尺寸都可保留原有特性,經過1000 ℃碳化及移除無機模板後,其比表面積可達到1000 ~ 2000 m2g-1,孔體積約0.6~ 1.3 cm3g-1。另外,在呋喃醇的部分,由於呋喃醇是一種酸催化聚合的單體,所以我們以初濕含浸(Incipient wetness process)及乾式含浸兩種方式利用矽鋁酸鹽及純氧化矽固體酸的特性,去催化呋喃醇聚合形成聚呋喃醇樹脂,經過1000 ℃碳化及移除無機模板後,即可得到中孔洞碳材,其比表面積可達到1000~ 1700 m2g-1,孔體積約0.5~ 1.7 cm3g-1。

    In this thesis, there are two major researching parts. 1. Chemical coating of metal oxides onto as-synthesized mesoporous silicas; 2. Synthesis of mesoporous carbons.

    The first part is chemical coating of metal oxides onto the as-synthesized mesoporous silicas. The mesoporous silicas of high surface area, tunable pore size and large pore volume are desirable for catalytic processes involving large molecules. However, the amorphous silica framework of weak acidity hinders the applications in acidic-catalytic reactions. The mesoporous silicas as potential catalysts can be enhanced by a modification of their surface with other metal oxides. To increase the acidity, grafting Al2O3 onto mesoporous silica is a very promising method. In typical grafting processes, the calcined mesoporous silicas have been widely used. While, there exist two disadvantages in using calcined mesoporous silica: 1. The calcined mesoporous silica has high absorption capability for water, which can lead to a serious self-clustering of metal oxides. 2. Removal of surfactants is a time- and energy-consuming process and the surface silanol group density is considerably reduced during high-temperature calcinations. In this thesis, we proposed a new method to coat the metal oxides layer onto the mesoporous silica by directly refluxing the as-synthesized mesoporous silica in a 1-propanol solution of the metal alkoxide. After calcination, the metal oxide-coated mesoporous silicas with high surface area, large porosity were obtained.

    In the second part, we used mesoporous silicas–SBA-15 as a solid template to prepare the mesoporous carbons – CMK-3 or CMK-5 by using phenol-formaldehyde resin or furfuryl alcohol as carbon source. When using phenol-formaldehyde resin, a simple impregnation in ethanol solution was perform to introduce the phenol-formaldehyde polymer into mesoporous silicas. Cuing at 100 oC, carbonization at 1000 oC and silica etching by HF solution gave the CMK-3 mesoporous carbon. A typical incipient-wetness process was used to fill the mesopores of the acidic Al2O3-coated or pure silica mesoporous silicas with the furfuryl alcohol. Due to the high acidity of the Al2O3-coated mesoporous, polymerization of the furfuryl alcohol was achieved at relatively lower (60–80 oC). In contrast, higher polymerizing temperature (100 oC) was required for the pure-silica mesoporous silicas. After pyrolysis at 1000 oC under N2 environment and silica removal by HF-etching, the CMK-3 mesoporous carbons were synthesized. With a careful control on the furfuryl alcohol content, the CMK-5 consisted of carbon tube were generated instead. These mesoporous carbons possess the properties of high surface area (1700~1000 m2g-1), and large volume (1.5~ 0.7 cm3g-1).

    第一章 緒論 1 1-1 中孔洞分子篩簡介 1 1-1-1 分子篩的發展 1 1-1-2 中孔洞分子篩MCM-41簡介 1 1-1-3 中孔洞分子篩SBA-15及MCF簡介 2 1-2 中孔洞分子篩材料主要研究範疇 4 1-3 中孔洞分子篩表面修飾 5 1-4 中孔洞分子篩的性質與應用 9 1-5 中孔洞碳材的簡介 10 1-6 呋喃樹酯之合成與硬化反應 13 1-7 酚醛樹酯之硬化反應 15 第二章 實驗方法與步驟 17 2-1 實驗藥品 17 2-2 實驗步驟 17 2-2-1 製備中孔徑氧化矽模板 17 2-2-2 氧化矽模板表面嫁接實驗合成 20 2-2-3 中孔徑碳材合成 21 2-3 儀器鑑定分析 27 第三章 中孔洞氧化矽模板的鑑定及分析 31 3-1 在酸性條件下合成MCM-41 31 3-2 在酸性條件下合成SBA-15 36 3-3 在中性條件下合成MCF 39 第四章 中孔洞氧化矽分子篩後合成表面修飾金屬氧化物 42 4-1 研究動機與目的 42 4-2 實驗設計 43 4-3 結果討論 44 4-3-1 利用Al(i-OPr)3進行中孔洞氧化矽表面的化學修飾 44 4-3-2 利用Ti(n-OBu)4進行中孔洞氧化矽表面的化學修飾 54 4-3-3 利用VO(n-OPr)3進行中孔洞氧化矽表面的化學修飾 60 4-3-4 利用AlCl3進行中孔洞氧化矽表面的化學修飾 63 4-3-5 利用FeCl3進行中孔洞氧化矽表面的化學修飾 74 第五章 中孔洞碳材合成 79 5-1 研究動機及目的 79 5-2 結果與討論 80 5-2-1 以乾式含浸法利用酚醛樹脂製備中孔碳材 80 5-2-2 以濕式交換法利用酚醛樹脂製備中孔洞碳材 83 5-2-3 以初濕含浸方式(Incipient wetness technique)利用呋喃醇製備中孔洞碳材 90 5-2-4 藉由控制呋喃醇的含量製備CMK-5結構之中孔洞碳材 102 5-2-5 直接將界面活性劑轉成中孔洞碳材 107 第六章 結論 112 參考文獻 114

    參考文獻
    1. Mc Bain, J. W., The Sorption of Gases and Vapours by Solids, Rutledge and Sons, London, ch. 5, 1932.
    2. Bhatia, J., Zeolit catalysis principles and application, CRC press, Florida, 1990.
    3. B. Imelik, Y. J. Naccache, J. Bentaaiit, C. Vedrine, G. Coundurier, H. Praliaud, Catalysis by zeolite, Elesevier, Amstordam, 1980.
    4. W. J. Ward, Molecular sieve catalysts, in applied industrial catalysis, Academic press, New York, vol. 3,1984.
    5. IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 31, 578, 1972.
    6. C. T. Kresge, M. E. Leonowice, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 359, 710, 1992.
    7. J. S. Beck, J. C. Vartuil, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 114, 10834, 1992.
    8. Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    9. C. F. Cheng, Z. Luan, J. Klinowski, Langmuir, 11, 2815, 1995.
    10. J. S. Beck, J. C. Vartuli, G. J. Kemedy, C. T. Kresge, W. J. Roth, S. E. Schamm, Chem. Mater. 6, 1816, 1994.
    11. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemlka, G. D. Stucky, Science, 279, 548, 1998.
    12. Patrick Schmidt-Winkel, Wayne W. Lukens, Jr., Dongyuan Zhao, Peidong Yang, Bradley F. Chmelka, and Galen D. Stucky, J. Am. Chem. Soc. 121, 254, 1999.
    13. A. Sayari, J. of Phys. Chem. B 102, 5503, 1998.
    14. M. Hartmann, A. Poppl, L. Kevan, J. Phys. Chem. 99, 17494, 1995.
    15. Hartmann, M.;Poppl, A.;Kevan, L. J. Phys. Chem. 1996, 100, 9906. 24.
    16. Z. Luan, J. Xu, L. Kevan, Nukleonika, 42, 493, 1997.
    17. A. Poppl, M. Hartmann, L. Kevan, J. Phys. Chem. 99, 17251, 1995.
    18. A. Poppl, L. Kevan, Langmuir , 11, 4486, 1995.
    19. A. Poppl, M. Hartmann, L. Kevan, Appl. Magn. Reson, 10, 491, 1996.
    20. J. M. Kim, J. H. Kwak, S. Jun, R. Ryoo, J. Phys. Chem. 99, 16742, 1995.
    21. K. R. Kloetstra, H. van Bekkum, J. Chem. Soc. Chem. Commun. 1005, 1995.
    22. M. Yonemitsu, Y. Tanaka, M. Iwamoto, Chem. Mater. 9, 2679, 1997.
    23. Ali-Reza Badiei, Laurent Bonneviot, Inorg. Chem. 37, 4142, 1998.
    24. B. J. Aronson, C. F. Blanford, A. Stein, Chem. Mater. 9, 2842, 1997.
    25. Y. Xu, C. H. Langford, J. Phys. Chem. B 101, 3115, 1997.
    26. J. V. Walker, M. Morey, H. Carlsson, A. Davidson, G. D. Stucky. A. Butler, J. Am. Chem. Soc. 119, 6921, 1997.
    27. Z. Luan, L. Kevan, J. Phys. Chem. B 101, 2020, 1997.
    28. Z. Luan, P. A. Meloni, R. S. Czernuszewicz, L. Kevan, J. Phys. Chem. B 101, 9046, 1997.
    29. R. Burch, N. Cruise, D. Gleeson, S. C. Tsang, Chem. Commun. 951, 1996.
    30. S. Ayyappan, N. Ulagappan, Proc. - Indian Acad. Sci., Chem. Sci. 108, 505, 1996.
    31. C. Song, K. M. Reddy, Prepr. - Am. Chem. Soc., Div. Pet. Chem. 41, 567, 1996.
    32. Y. Yue, Y. Sun, Z. Gao, Catal. Lett. 47, 167, 1997.
    33. R. Ryoo, C. H. Ko, J. M. Kim, R. Howe, Catal. Lett. 37, 29, 1996.
    34. C. H. Ko, R. Ryoo, Chem. Commun. 2467, 1996.
    35. R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J. Phys. Chem. 100, 17718, 1996.
    36. A. Corma, A. Martinez, V. J. Martinez-Soria, Catal. 169, 480, 1997.
    37. U. Junges, F. Schuth, G. Schmid, Y. Uchida, R. Schlogl, Ber. Bunsen- Ges. Phys. Chem. 101, 1631, 1997.
    38. C. A. Koh, R. Nooney, S. Tahir, Catal. Lett. 47, 199, 1997.
    39. K. M. Reddy, C. Song, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 41, 906, 1996.
    40. A. Jentys, N. H. Pham, H. Vinek, M. Englisch, J. A. Lercher, Microporous Mater. 6, 13, 1996.
    41. D. S. Shephard, T. Maschmeyer, B. F. G. Johnson, J. M. Thomas, G. Sankar, D. Ozkaya, W. Zhou, R. D. Oldroyd, R. G. Bell, Angew. Chem. Int. Ed. Engl. 36, 2242, 1997.
    42. C. T. Fishel, R. J. Davis, J. M. Garces, J. Catal. 163, 148, 1996.
    43. R. Leon, D. Margolese, G. Stucky, P. M. Petroff, Phys. Rev. B: Condens. Matter 52, 2285, 1995.
    44. S. G. Romanov, N. P. Johnson, C. M. S. Torres, H. M. Yates, J. Agger, M. E. Pemble, M. W. Anderson, A. R. Peaker, V. Butko, Proc. Electrochem. Soc. 95-17, 14, 1996.
    45. Michael Fro¨ba, Ralf Ko¨hn, and Gae¨lle Bouffaud, Chem. Mater. 11, 2858, 1999.
    46. W. Bohlmann, K. Schandert, A. Poppl, H. Semmelhack, Zeolites 19, 297, 1997.
    47. L. Frunza, H. Kosslick, H. Landmesser, E. Hoft, R. Fricke, J.Mol. Catal. A: Chem. 123, 179, 1997.
    48. I. Honma, H. Sasabe, H. S. Zhou, Mater. Res. Soc. Symp. Proc. 457, 525, 1997.
    49. R. Hoppe, A. Ortlam, J. Rathousky, G. Schulz-Ekloff, A. Zukal, Microporous Mater. 8, 267, 1997.
    50. C. E. Fowler, S. L. Burkett, S. Mann, Chem. Commun. 1769, 1997.
    51. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York , 1988.
    52. H. C. Foley, J. Microporous Mater. 4, 407, 1995.
    53. T. Kyotani, Carbon 38, 269, 2000.
    54. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater. 8, 454, 1996.
    55. W. Lu, D. D. L. Chung, Carbon 35, 427, 1997.
    56. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 12, 62, 2000.
    57. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 12, 3337, 2000.
    58. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 146, 3639, 1999.
    59. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater. 12, 3397, 2000.
    60. A. A. Zakhidov,; R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, Science 282, 897. 1998,
    61. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 9, 609, 1997.
    62. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 352, 3, 1986.
    63. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. D. Stucky, H. J. Shin and R. Ryoo, Nature, 408, 449, 2000.
    64. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 13, No. 9, 677, 2001,
    65. Sang Hoon Joo, Seong Jae Choi, Ilwhan Oh, Juhyoun Kwak, Zheng Liu, Osamu Terasaki and Ryong Ryoo, Nature, 412 ,169, 2001.
    66. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc. 122, 10712, 2000.
    67. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 15, 2815, 2003.
    68. W. Wang, S. Xie, W. Zhou, A. Sayari, Chem. Mater. 16, No. 9, 1756 2004.
    69. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem. 115 , 3254, 2003.
    70. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka, and Galen D. Stucky, Science 279, 548,1998.
    71. Yonggang Yang, Masahiro Suzuki, Hirofusa Shirai, Akio Kurose and Kenji Hanabusa, Chem. Commun. 2032, 2005.
    72. V. Alfredsson and M. W. Anderson. Chem. Mater. 8, 1141, 1996.
    73. H. P. Lin and C. Y. Mou Acc. Chem. Rev. 35, 927, 2002.
    74. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater. 8, 1147, 1996.
    75. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater. 13, 2247, 2001.
    76. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. Eon. Park and G. D. Stucky. J. Phys. Chem. B. 106, 2552, 2002.
    77. Z. Zhang, Y. Han, Feng-Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc. 123, 5014, 2001.
    78. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc. 123, 691, 2001.
    79. Y. Han, S. Wu, Y. Sun, D. Li and Feng-Shou Xiao. Chem. Mater. 14, 1144, 2002.
    80. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng - Shou Xiao. Angew. Chem. Int. Ed. 7, 1258, 2001.
    81. Y. Han, Feng-Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin.J. Phys. Chem. B. 105, 7963, 2001.
    82. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater. 12, 2448, 2002.
    83. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater. 15, 2161, 2003.
    84. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem. 14 , 951, 2004.
    85. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature, 48, 289, 2000.
    86. E. B. Erlein. Angew. Chem. Int. Ed. 42, 614, 2003.
    87. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 42, 413, 2003.
    88. 36. F. Noll, M. Sumper and N. Hampp. Nano. Lett. 2, 91, 2002.
    89. Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Chem. Mater. 11, 1621, 1999.
    90. X. S. Zhao, Max G. Q. Lu., C. Song, J. Mol. Catal. A, 191, 67, 2003.
    91. R. Ryoo , M. J. Kim, Chem. Commun. 2225, 1997.
    92. Robert Mokaya, William Jones, Chem. Commun. 2185, 1997.
    93. M. S. Morey, S. O'Brien, S. Schwarz, G. D. Stucky, Chem. Mater. 12, 898, 2000.
    94. S. Wu, Y. Han, Y.-C. Zou, J.-W. Song, L. Zhao, Y. Di, S.-Z Liu, F.-S. Xiao, Chem. Mater. 16, 486, 2004.
    95. Y. Yue, A. Cedeon, J.-L. Bonardet, N. Melosh, J.-B. D' Esinose, Fraissard, J. Chem. Commun. 1697, 1999.
    96. W. Zhang. Q. Lu, B. Han, M. Li, J. Xiu, P. Ying, C. Li, Chem. Mater. 14, 3413. 2002.
    97. S. Che, K. Lund, T. Tatsumi, S. Iijima, S. H. Joo, R. Ryoo, O. Terasaki, Angew. Chem. Int. Ed. 42, 2182. 2003.
    98. M. Kruk, B. Dufour, E. B. Celer, T. Kowalewski, M. Jaroniec, K. Matyjaszewski, Chem. Mater. 18, NO.6, 1417, 2006,
    99. J. Kim, J. Lee and T. Hyeon, Carbon, 42, 2711, 2004.

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE