| 研究生: |
賴昱銓 Lai, Yu-Chuan |
|---|---|
| 論文名稱: |
以爆炸模擬機探討鋼筋混凝土板動態破壞行為之數值分析 Numerical analysis of dynamic failure behavior of reinforced concrete slabs using modified blast simulator |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
蔡營寬
Tsai, Ying-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 鋼筋混凝土板 、橡膠軟墊 、有限元素法 、爆炸模擬機 、壓力峰值 |
| 外文關鍵詞: | Reinforced Concrete Slab, Elastomer, Finite Element Method, Blast Simulator, Peak Pressure |
| 相關次數: | 點閱:43 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來國際局勢動盪不安,有2022年爆發的俄烏戰爭,亦有從2023年開始紛爭不斷的以巴衝突。遠程導彈劃過都市上空,筆直撞上高聳的建築物,造成嚴重的人員及財物損失,對於處在這些戰亂地方的人們再也不是新鮮事。在台灣至今仍處於隨時可能遭受武力侵略的當下,研究爆炸對建築構件(梁、柱、版、牆等)造成的影響,並發展一套建築物受爆炸攻擊後的損害程度分析方法就顯得十分重要。
本研究將著重探討爆炸對鋼筋混凝土板造成的破壞,並且採用爆炸模擬機—一種以撞擊行為模擬爆炸壓力波的新方法。相較於真實爆炸試驗,爆炸模擬機能以更經濟、更安全的方式觀察並分析爆炸對建築構件造成的影響,並且最重要的,使用爆炸模擬機能避免產生火花及煙塵,使我們得以更清楚地觀察建築構件破壞的時間點及位置,對建築構件破壞模式的分析有至關重要的意義。
爆炸模擬機包含兩個部分,其一為提供撞擊力的衝擊質量塊,其二為橡膠軟墊。橡膠軟墊的材料性質以及形狀對模擬爆炸壓力波有決定性的影響。本文將討論(一)無橡膠軟墊、 (二)平面橡膠軟墊、 (三)金字塔狀橡膠軟墊以上三種情況,分析各種情況下鋼筋混凝土板受到的壓力是否能有效模擬爆炸壓力波。某一特定爆炸壓力波皆可由三個參數決定,分別為壓力峰值、衝量(壓力對時間積分而得之)、正相持續時間。故若要判斷爆炸模擬機是否有效模擬爆炸壓力波,只需比對鋼筋混凝土板所記錄到的三個參數是否相同;若相同,則鋼筋混凝土板所受到破壞情形亦應與真實爆炸相同。本研究亦將探討在不同加載速度下,鋼筋混凝土板的破壞情形,為未來相關的實驗提供數值模擬方面的參考,給出加載速度對壓力峰值以及衝量的關係,再透過相關爆炸分析軟體進行數值轉換,從而得到產生某特定爆炸壓力波所需的炸藥當量及爆炸中心與建築構件的距離。
In recent years, the international situation has been tumultuous, with the outbreak of the Russia-Ukraine war in 2022 and the ongoing Israeli-Palestinian conflict since 2023. Long-range missiles streaking across city skies, crashing into towering buildings, and causing severe casualties and property damage have become all too familiar to those living in these war-torn regions. Given that Taiwan remains under the constant threat of military invasion, it is crucial to study the impact of explosions on building components (beams, columns, slabs, walls, etc.) and develop a method to analyze the extent of damage for buildings under an explosive attack.
This research focuses on the damage caused by explosions to reinforced concrete slabs, employing the blast simulator—a novel method that simulates blast pressure waves through impact. Compared to real explosion tests, the blast simulator offers a more economical and safer way to observe and analyze the impact of explosions on building components. Most importantly, the use of a blast simulator avoids the generation of sparks and smoke, allowing for clearer observation of the exact timing and location of the damage to building components, which is crucial for analyzing damage patterns.
The blast simulator consists of two parts: an impact mass providing the impact force and a rubber cushion (elastomer). The material properties and shape of the elastomer have a decisive effect on simulating the blast pressure wave. This paper will discuss three scenarios: (1) without an elastomer, (2) with a flat elastomer, and (3) with a pyramid-shaped elastomer. The study will analyze whether the pressure experienced by the reinforced concrete slab in each scenario can effectively simulate a blast pressure wave. A specific blast pressure wave can be determined by three parameters: peak pressure, impulse (integral of pressure over time), and positive phase duration. To determine if the blast simulator effectively simulates a blast pressure wave, one only needs to compare whether these three parameters recorded on the reinforced concrete slab are the same; if they are, the damage to the reinforced concrete slab should also correspond to that of a real explosion. This research will also explore the damage to reinforced concrete slabs under different loading velocities, providing a reference for numerical simulations in future experiments. The relationship between loading speed, peak pressure, and impulse will be given, and then numerical conversion will be performed through relevant explosion analysis software to obtain the equivalent amount of explosive required to generate a specific blast pressure wave and the distance between the explosion center and the building component.
1. Gilbert Hegemier, F.S., Karen Arnett, Tonatiuh Rodriguez-Nikl, and J.W. Mike Oesterle, M. Gram, and A. Clark, The UCSD Blast Simulator. Proceedings of the 77th Shock and Vibration Symposium, Monterey, CA, . 2006.
2. Freidenberg, A., UCSD_Advancements in Blast Simulator Analysis Demonstrated on a Prototype Wall Structure. 2013.
3. Zhong, J., et al., Experimental and numerical simulation study on failure mode transformation law of reinforced concrete beam under impact load. International Journal of Impact Engineering, 2023. 179.
4. Zhixiang Xiong , W., Guocai Yu , Jian Ma, Weiming Zhang and Linzhi Wu Experimental and Numerical Study of Non-Explosive Simulated Blast Loading on Reinforced Concrete Slabs. 2023.
5. UFC 3-340-02, “Structures to Resist the Effects of Accidental Explosions. 2008.
6. tsai, y.-k., Research of the Communication Stations Enhancement Toward the Protection of Electromagnetic Pulse and Structure Security for Information, Communications and Electronic Force Command Project. 2023.
7. 劉建賢, 鋼筋混凝土版抗炸性能補強試驗及模擬. 2020.
8. Mcvay, M.K., Spall Damage of Concrete Structures.
9. Hao, J.L.a.H., Numerical study of concrete spall damage to blast loads. International Journal of Impact Engineering, vol. 68, pp. 41–55, Jun. 2014, doi: 10.1016/j.ijimpeng.2014.02.001.
10. Haufe, A., Weimar, K., & Göhner, U, Advanced airbag simulation using fluid-structure-interaction and the eulerian method in LS-DYNA. Proceedings of the LS-DYNA Anwenderforum, 2004.
11. Thai, D.K., & Nguyen, D. D, Calibrating the K&C Material Model for Fiber Reinforced Concrete Structures. Springer, Singapore, 2020: p. 241-249.
12. Markovich, N., Kochavi, E., & Ben-Dor, G, Calibration of a concrete damage material model in LS-Dyna for a wide range of concrete strengths International Workshop on Structures Response to Impact and Blast (IWSRIB), 2009.
13. Material selector for LS- DYNA on Ansys website. p. https://lsdyna.ansys.com/dynamat/.
14. Oesterle., M.G., Blast Simulator Wall Tests: Experimental Methods and Mitigation Strategies for Reinforced Concrete and Concrete Masonry. PhD thesis, University of California, San Diego. 2009.
15. Hallquist, J.O., LS-DYNA theory manual. Livermore Software Technology Corporation, Livermore, CA. 2006.
16. Rodriguez-Nikl., T., Experimental Simulations of Explosive Loading on Structural Components: Reinforced Concrete Columns with Advanced Composite Jackets. PhD thesis, University of California, San Diego. 2006.
17. S. Kolling, P.B., D. Benson, and W. Feng, A tabulated formulation of hyperelasticity with rate effects and damage. Computational Mechanics. 2007.
18. Lindley, A.N.G.a.P.B., The compression of bonded rubber blocks. Proceedings Of The Institution Of Mechanical Engineers.
19. LSTC, LS-DYNA ® KEYWORD USER’S MANUAL VOLUME II Material Models LIVERMORE SOFTWARE TECHNOLOGY (LST), AN ANSYS COMPANY. Available: www.lstc.com. 2020.
20. Kim, D.K.T.a.S.E., Prediction of UHPFRC panels thickness subjected to aircraft engine impact. Case Studies in Structural Engineering.
21. Schwer, L.E., 14th International LS-DYNA Users Conference Jones-Wilkens-Lee (JWL) Equation of State with Afterburning. 2016.
22. Crawford, J.E., Wu, Y., Choi, H. J., Magallanes, J. M., & Lan, S., Use and validation of the release III K&C concrete material model in LS-DYNA. Karagozian & Case, Glendale, 2012.
23. 趙海鷗, LS-DYNA動力分析指南. 兵器工業出版社, 2003.
24. Hughes, T.J., Taylor, R. L., Sackman, J. L., Curnier, A., & Kanoknukulchai, W, A finite element method for a class of contact-impact problems Computer methods in applied mechanics and engineering. 1976.