簡易檢索 / 詳目顯示

研究生: 朱國勝
Chu, Kuo-Sheng
論文名稱: 側向噴注於超音速流場之不穩定特性初步分析
A Preliminary Study of the Unstable Factors of Lateral Injected Fuel Jet into Supersonic Flow
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 消散距離震波相互作用弓形震波振盪噴霧擺動
外文關鍵詞: spray dissipation distance, shock/shock interaction, shock oscillation, spray swing motion
相關次數: 點閱:123下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液態燃料側向噴注於馬赫2流場觀察顯示下游噴霧產生不穩定之擺動現象,對燃料氣化消散距離產生重大影響。本研究對造成噴注不穩定特性因素進行初步的探討,應用視流紋影法及高速攝影機分析弓形震波的變化,同時擷取噴注平板壁面上壓力訊號,利用快速傅立葉轉換進行頻譜分析,並將兩者對於噴霧消散現象影響進行比較。實驗分析顯示,噴注前之邊界層分離引發之斜震波與弓形震波會相互作用造成弓形震波振盪,進而影響震波下游壓力及速度的變化。在垂直噴注條件下,震波主振盪頻率於10kHz以下,而在較高動量通量噴注之振盪頻率會降至5kHz以下,同時具備較顯著的噴霧擺幅。在前傾45°噴注之弓形震波振盪頻率較垂直噴注為大,且可以觀察到高於10kHz的震盪頻頻率出現,燃料消散距離也比垂直噴注縮短許多。近壁面動態壓力感測顯示,噴注下游近壁面渦流主要的壓力響應頻率約在50kHz至150kHz,同時壓力訊號隨測試下游量測距離快速衰減,但噴霧仍保持擺動現象。經視流影像觀察,下游噴霧擺動頻率與弓形震波震盪頻率相近,推論影響燃料消散距離之主要因素是由弓形震波與分離震波相互作用引發下游壓力之不穩定性所主導。

    Observation of the phenomenon of liquid fuel laterally injected into Mach 2 airflow shows the downstream fuel spray swings violently. The phenomenon greatly enhances the contact (mix) between the liquid spray and the surrounding supersonic airflow to cause the droplets to quickly evaporate. The distance that the droplets of the spray evaporate is defined as the spray dissipation distance. The swing motion of the spray may be caused by the occurrence of uneven and unstable pressure field. The objective of this thesis research is to analyze the sources of this unstable pressure effect.
    Coupled with Schlieren photography and high-speed camera, the experimental observations are performed in a shock tunnel. The images of the bow shock induced by the liquid injection as well as the dynamic pressure measurements on the flat plate model wall are taken and analyzed. The observation shows the oblique shock induced by the boundary layer separation ahead of the liquid jet interacts and causes the bow shock to oscillate and may lead to downstream pressure field oscillation. For the right-angle fuel injection, the oscillation frequencies are found under 5KHz at lower jet momentum flux, to 10KHz at higher momentum flux. For 45 forerake of fuel injection, the bow shock oscillation frequency further increases to above 10KHz, accompany with a much shorter spray dissipation distance than that of right-angle injection.
    The dynamic pressure measurements at the near wall show that the frequency response of the wake vortices behind the fuel injection are mainly in 50KHz to 150KHz and damping out quickly along the downstream where the spray swings violently. These observations infer that the interaction of the separation shock with bow shock may be the crucial source of downstream pressure unstable thus lead to the spray swing motion and quick dissipation phenomenon.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機與目的 6 第二章 實驗設備 8 2-1 反射式震波風洞 8 2-1-1 震波風洞系統的驅動 9 2-1-2 震波管理論 9 2-2 風洞氣體系統 12 2-3 燃料噴注系統 12 2-4 影像拍攝系統 13 2-5 訊號同步控制及擷取系統 13 第三章 研究方法 15 3-1 含壓力感測器噴注平板模型 15 3-1-1 噴注元件的設計 15 3-2 流場光學觀測法 16 3-3 弓形震波位置變化分析 16 3-4 平板上壓力頻譜分析 17 第四章 實驗結果與討論 19 4-1弓形震波與燃料消散分析 19 4-1-1 垂直噴注下弓形震波不穩定性觀察 20 4-1-2 前斜45°噴注弓形震波不穩定性觀察 23 4-2 噴注平板上壓力場震盪頻率分析 25 4-2-1 垂直噴注後壁面上壓力訊號 25 4-2-2 前斜噴注後壁面上壓力訊號 27 第五章 總結與未來工作 28 參考文獻 30

    [1] Lewis, M.J.,2001, “Significance of Fuel Selection for Hypersonic Vehicle Range,” Journal of Propulsion and Power, 17(6),pp. 1214-1221.
    [2] J.A. Schetz, E.A. Kush Jr. and P.B. Joshi, “Wave phenomena in Liquid Jet Breakup in a Supersonic Crossflow”, AIAA pp.744-78 1980.
    [3] J.B. Perurena, C.O. Asma, A.R. Theunissen, A.O. Chazot, “Experimental investigation of Liquid Jet Injection into Mach 6 Hypersonic Crossflow” Experiment Fluids, 46, pp.403-417.(2009).
    [4] M.R. Gruber, A. S. Nejab, T.H. Chen, and J.C. Dutton, “Bow shock/Jet Interaction in Compressible Transverse Injection Flowfields” ,AIAA jounrnal, 34(1996), pp.2191-2193.
    [5] Z.R. Murphree, J. Jagodzinski, E.S. Hood, Jr., N.T. Clemens, and D.S. Dolling, “Experimental Studies of Transitional Boundary Layer Shock Wave Interactions”, AIAA Aerospace Sciences Meeting and Exhibit January 2006.
    [6] Krishnan Mahesh, “The Interaction of Jets with Crossflow”, Annu. Rev. Fluid Mech. 2013. 45:379-407.
    [7] T. F. Fric, A. Roshko, “Vortical Structure in the Wake of a Transverse Jet”, Journal of Fluid Mechanics, Vol.279,pp1-47,1994
    [8] K.C. Lin, P.J. Kennedy, T.A. Jackson, “Structures of Water Jets in a Mach 1.94 Supersonic Cross Flow’, AIAA,2004-971.
    [9] 蘇祐翔 “燃料噴霧在馬赫2超音速氣流中的混合現象” 成功大學航空太空工程學系博士論文,2016
    [10] J. Beloki Perurena, C.O. Asma, R. Theunissen and O. Chazot, “Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow”,Springer-Verlag 2008.
    [11] 張雅筑 “氫氣噴注於背階超音速流場之觀察” 成功大學航空太空工程學系碩士論文,2013
    [12] 陳俊岳 “反射式震波風洞校驗” 成功大學航空太空工程學系碩士論文,2011
    [13] C. O. Asma, S.Tirtey and F. Schloegel, “Flow Topology Around Gas, Liquid, and Three-Dimensional Obstacles in Hypersonic Flow”,AIAA Journal Vol.50, No. 1, January 2012

    無法下載圖示 校內:2020-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE