簡易檢索 / 詳目顯示

研究生: 戴子堯
Tai, Tzu-Yao
論文名稱: 放電加工之電極尺寸與加工參數對工具鋼表層特性之研究
Effect of Electrode Size and Working Parameters upon Tool Steel Surface Integrity by EDM Process
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 143
中文關鍵詞: 放電加工微細放電加工工具鋼表層特性尺寸效應裂紋臨界界線
外文關鍵詞: EDM, micro-EDM, tool steel, surface integrity, size effect, crack critical line
相關次數: 點閱:175下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    放電加工法特別適用於高強度、高硬度材料的加工。本研究以不同的電極尺寸,電極直徑由9.5mm至0.5mm、300mm與26mm,以傳統放電加工機與微細放電加工機,對工具鋼SKD11與SKD61進行加工,探討電極尺寸與放電加工參數對加工表層特性的影響。
    研究結果顯示,微細放電加工表面與傳統放電加工的表層特性是一樣,不同在於微細放電加工表面全被淺坑參差任意覆蓋,每個淺坑都可以清楚被辨識,都代表每一個電弧柱的時間順序與位置,若其與加工參數迴歸分析,可以得到淺坑直徑與放電電壓、放電電流與放電持續時間之經驗公式。
    在電極尺寸大於500mm的傳統放電加工中,擴孔量、消耗比、表面粗糙度與白層厚度,皆受放電電流與放電持續時間要影響,而電極尺寸不影響其他表層特性,只影響表面裂紋生成。在電極尺寸小於500mm的微細放電加工中,放電電壓與放電電容對表層特性的影響,則大過於其他加工參數,過小的放電電壓將導致加工不穩定,過大的放電電壓則將惡化放電加工表層特性,而降低放電電容雖可以提升放電加工表層特性,但當放電電容小於20pF時,由於電路中遊浮電容將導致連續電弧與加工短路,也將惡化放電加工表層特性。
    在放電加工參數對放電裂紋影響方面,發現當放電電流增大時,白層厚度歧異度增大,厚度大的白層所佔比例少,因此可以降低裂紋生成,而當放電持續時間增大時,由於白層整體厚度提昇與引入更多應力,因此也助於裂紋開展。在電極尺寸方面對於裂紋影響方面,當電極尺寸減少時,由於電極中心到電極中間的距離縮短,導致溫度梯度變化小,因此表面裂紋不易生成。本研究以裂紋臨界界線預測裂紋生成與否,在裂紋臨界界線上方為裂紋生成區,在下方則為無裂紋區,發現加工材料的熱傳導係數將影響曲線斜率,當熱傳導係數增大時可增加其斜率,而電極尺寸則使裂紋臨界界線產生平移位移,電極尺寸縮小可增大無裂紋區之區域。

    Abstract
    EDM is a high-technology process particularly suitable for the machining of materials with high strength and toughness properties. In this study, tool steel SKD11 and SKD61 are machined with varying electrode size, from 9.5mm to 0.5mm, 300mm and 26mm, covering the fields of conventional and micro EDM. Effects of electrode size and working parameters upon surface integrity are analyzed.
    The results reveal that the surface topography of the micro-EDM process exhibits similar features to those associated with the conventional EDM process. However, the Micro-EDMed surface shows the presence of an evenly distributed series of randomly overlapping craters. Each crater may be individually identified, and indicates the exact position and chronological sequence of a series of discrete discharges. A regression equation related diameter of crater and working parameters could be further established.
    Electrode size larger than 500mm belongs to conventional EDM. The results indicate that enlargement, wear ratio, surface roughness and the thickness of white layer are affected by pulse-on duration and pulse current. Electrode size affects only the formation of surface crack. Electrode size smaller than 500mm belongs to micro-EDM. Pulse voltage and capacity have the most significant influence on surface integrity. A Small voltage leads to unstable of the process and a large voltage deteriorates the surface roughness. Although reducing capacitance will promote the surface, when capacitance reduced to 20pF, the stray capacitance will cause the continuous arc and short circuit. This also does damage to the surface integrity.
    Surface crack is affected by both working parameters and electrode size. An increasing pulse-on duration will increase both the average white layer thickness and the induced stress. These two conditions tend to promote the crack formation. When the pulse current is increasing, the material removal rate will increase but with a deviation of thickness of the white layer and a less tendency to crack. When the electrode size is reduced, the temperature gradient of the dielectric is not serious because of the distance from the center to edge of the electrode is decreased, and this can prevent the surface crack. When crack critical line is performed to predict the formation of surface crack, the slope increased as the thermal conductivity of the working material increased. Changing the electrode diameter causes a parallel shift of the crack critical line location within the crack distribution map. When small diameter electrodes are employed in the machining process, the location of the line shifts upwards. This causes the no-crack zone to enlarge, and therefore permits a wider choice of machining parameters to be adopted.

    摘要 I 英文摘要 II 誌謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究方向 9 第二章 理論說明 11 2.1 放電加工法簡介 11 2.2 電氣迴路 14 2.3 淺坑體積推導 17 2.4 傳統放電加工與微細放電加工之比較 19 2.5 放電加工表層特性 23 2.5.1 表面形貌 23 2.5.2 變質層特徵 27 2.5.3 變質層硬度變化 31 2.5.4 放電加工引入應力 31 第三章 實驗內容 33 3.1 實驗流程 33 3.2 實驗工作母材 33 3.3 實驗規劃 37 3.4 實驗儀器與設備 43 3.5 電極製作 48 3.6 電極消耗比 52 3.7 材料移除率 56 第四章 實驗結果 57 4.1 電極直徑6.4mm加工結果 57 4.1.1 表面形貌 57 4.1.2 表面粗糙度 60 4.1.3 白層厚度 64 4.1.4 表面裂紋 69 4.2 電極直徑9.5mm至0.5mm加工結果 75 4.2.1 消耗比 75 4.2.2 表面裂紋 77 4.2.3 表面裂紋與電極尺寸之關係 80 4.3 電極尺寸300mm加工結果 83 4.3.1 擴孔量 83 4.3.2 材料移除率與電極消耗率 85 4.3.3 表面形貌 88 4.3.4 表面粗糙度 90 4.3.5 電容與電阻之影響 92 4.3.6 放電痕之探討 96 4.4電極尺寸26mm加工結果 103 4.4.1 擴孔量 103 4.4.2 電極消耗率與材料移除率 104 4.4.3 表面形貌 111 第五章 討論 114 5.1放電加工參數對表層特性之影響 114 5.2電極尺寸對表層特性之影響 120 5.3 電極尺寸與放電加工參數對鑽孔之影響 124 第六章 結論與建議 129 參考文獻 133

    參考文獻

    1. D. Y. Sheu, T. Masuzawa, “Development of large-scale production of microholes by EDM,” Proceedings of the13th International Symposium for Electromaching( ISEM XIII ), vol.1, pp.747-757, 2001.
    2. W. Koenig, F. Klocke, R. Lenzen, “The electrical machining process – what demands will they face in the future,” International Journal of Electrical Machining, No.1, pp. 3-8, 1996.
    3. M. S. Cheong, D.W. Cho, K. F. Ehmann, “Identification and control for micro-drilling productivity enhancement,” International Journal of Machine Tools and Manufacture, Vol. 39, pp. 1539-1561, 1999.
    4. D. M. Allen, and A. Lecheheb, “Micro electro-discharge machining of inkjet nozzles: optimum selection of material and machining parameters,” Journal of Materials Processing Technology, vol.58, pp.53~66, 1996.
    5. O. Koch, W. Ehrfeld, F. Michel, H. P. Gruber, “Recent Progress in micro-electro discharge machining – part I: technology,” Proceedings of the13th International Symposium for Electromaching( ISEM XIII ), vol.1, pp.737-745, 2001.
    6. T. Masaki, K. Kawata, T Masuzawa, “Micro electro-discharge machining and its applications,” Micro Electro Mechanical Systems, 1990. IEEE, pp. 21-26, 1990.
    7. H. Li, S. D. Senturia, “Molding Of Plastic Components Using Micro-EDM Tools,” Electronics Manufacturing Technology Symposium, Thirteenth IEEE/CHMT International ,pp.145-149, 1992
    8. B. Bozkurt, A. M. Gadalla, and P. T. Eubank, “Simulation of Erosion in a Single Discharge EDM Process,” Materials and Manufacturing Processes, Vol 11, No. 4, pp. 555-563, 1996.
    9. C. P. Tabrett, “The Electro-Discharge Machining Surfaces of High-Chromium White Irons,” Vol 15, pp. 1792-1794, 1996.
    10. Y. Fukuzawa, Y. Kojima, T, Tani, E. Sekiguti, N. Mohri, “Fabrication of surface Modification Layer on Stainless Steel,” Material and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.
    11. W. I. Jutzler, Funkenerosives Senken-Verfahreneinfluesse auf die Oberflaechenbeschaffenheit und die Festigkeit des Werkstuecks, Dissertation, RWTH Aachen, 1982.
    12. K. Schmidt, B. Ulrich, “Mechanische Kenngroessen funkenerosiv bearbeiteter Hartmetalle,“ Der Stahlformenbauer, pp. 36-41, 1994.03.
    13. 井上潔原著, 黃錦鍾譯, 放電加工, 高立圖書有限公司, 1998.
    14. 仁雄, “放電加工技術之現狀與將來,” 機械技術, vol. 161, pp. 220-226, 1998
    15. A. P. L. Turner, K. H. Adams, T. Vreeland, JR., “Damage due to electric spark discharge machining of zinc,” Materials Science and Engineering, vol. 1, pp. 70-73, 1966.
    16. J. R. Crookall and B. C. Khor, “Residual stress and surface effects in electro-discharge machining,” Proceeding of 13th International Machine Tool Design and Research Conference, Birmingham, pp. 331-338, 1972.
    17. J. E. Greene and J. L. Guerrero-Alvarez, “electro-erosion of metal surfaces,” Metallurgical Transactions, vol. 5, pp. 695-706, 1974.
    18. J. R. Crookall and B. C. Khor, “Electro-discharge machined surfaces,” Proceeding of 15th International Machine Tool Design and Research Conference, Birmingham, pp. 373-384, 1974.
    19. M. L. Jeswani and S. Basu, “Electron microprobe study of deposition and diffusion of tool material in electrical discharge machining,” International Journal of Production Research, vol. 17. No. 1, pp. 1-14, 1976.
    20. L. Massarelli and M. Marchionni, “Morphology of spark-affected surface layer produced on pure iron and steels by electro-discharge machining,” Metals Technology, , pp. 100-105, February 1977.
    21. M. L. Jeswani, “Roughness and wear characteristics of spark-eroded surfaces,” Wear, Vol. 51, pp. 227-236, 1978.
    22. P. H. Thornton and R. G. Davies, “High-rate spark hardening of hot-forging dies,” Metals Technology, pp. 69-73, February 1979.
    23. M. L. Jeswani, “Electrical discharge machining in distilled water,” Wear, Vol. 72, pp. 81-88, 1981.
    24. S. Tariq Jilani and P. C. Pandey, “Experimental investigations into the performance of water as dielectric in EDM,” International Journal of Machine Tool Design and Research, Vol. 24, No. 1, pp. 31-43, 1984.
    25. K. P. Rajurkar and S. M. Pandit, “Quantitative expression for some aspects of surface integrity of electro discharge machined components,” Journal of Engineering for Industry, Vol. 106, pp. 171-177, 1984.
    26. A. G. Mamalis, G. C. Vosniakos, N. M. Vaxevanidis, “Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces: an experimental investigations,“ Journal of Mechanical Working, Vol. 15, pp. 335-356, 1987.
    27. M. A. E.-R. Merdan and R. D. Arnell, “Surface integrity of a die steel after electrodischarge machining: 1 structure, composition, and hardness,” Surface Engineering, Vol. 5, No. 2, pp. 158-164, 1989.
    28. P. F. Thomson, “Surface damage in electrodischarge machining,” Materials Science and Technology, Vol. 5, pp. 1153-1157, 1989.
    29. AGIE, “Controlling EDM surface integrity,” American Machinist and Automated Manufacturing, pp. 80-83, November 1987.
    30. L. C. Lee, L. C. Lim, V. Narayanan and V. C. Venkatesh, “Quantification of Surface Damage of Tool Steels after EDM,” Int. J. Mach. Tools Manufact., Vol.28, No.4, pp.359-372, 1988.
    31. L. C. Lee, L. C. Lim, Y. S. Wong and H. H. Lu, “Towards a Better Understanding of the Surface Features of Electro-Discharge Machined Tool Steels,” Journal of Materials Processing Technology, Vol. 24, pp. 513-523, 1990.
    32. L. C. Lim, L. C. Lee, Y. S. Wong, and H. H. Lu, “Solidification Microstructure of Discharge Machined Surfaces of Tool Steels,” Materials Science and Technology, Vol.7, pp. 239-248, 1991.
    33. Y. S. Wong, L. C. Lim, L. C. Lee, “Effects of flushing on electro-discharge machined surfaces,” Journal of Materials Processing Technology, Vol. 48, pp. 299-305, 1995.
    34. L. C. Lee, L. C. Lim, Y. S. Wong, “Crack susceptibility of electro-discharge machined surfaces,” Journal of Materials Processing Technology, Vol. 29, pp. 213-221, 1992.
    35. L. C. Lee, L. C. Lim, Y. S. Wong, “Towards Crack Minimisation of EDMed Surfaces,” Journal of Materials Procession Technology, Vol. 32, pp.45-54, 1992.
    36. I. Ogata and Y. Mukoyama, “Carburizing and decarburizing phenomena in EDM’d surface,” International Journal of Japan Society Precision Engineering”, Vol. 27, No. 3, pp. 197-202, 1993.
    37. G. Fredriksson and S. Hogmark, “Influence of dielectric temperature in electrical discharge machining of hot work tool steel,” Surface Engineering, Vol. 11, No. 4, pp. 324-330, 1995.
    38. O. A. Abu Zeid, “On the effect of elecrodischarge machining parameters on the fatigue life of AISI D6 tool steel,” Journal of Materials Processing Technology, Vol. 68, pp. 27-32, 1997.
    39. D. I. Pantelis, N. M. Vaxevanadis, A. E. Houndri, P. Dumas, M. Jeandin, “Investigation into application of electrodischarge machining as steel surface modification technique,” Surface Engineering, Vol. 14, No. 1, 1998.
    40. O. O. Popoola, M. J. Zaluzec, L. Haack, “Characterisation and application of electrodischarge machined cast aluminium alloy surfaces,” Surface Engineering, Vol. 15, No. 4, pp. 329-334, 1999.
    41. B. H. Yan, F. Y. Huang, H. M. Chow, J. Y. Tsai, “Micro-hole machining of carbide by electric discharge machining,” Journal of Materials Processing Technology, Vol. 87, pp. 139-145, 1999.
    42. S. L. Chen, B. H. Yan, F. Y. Huang, “Influence of kerosene and distilled water as dielectric on the electric discharge machining characteristics of Ti-6Al-4V,“ Journal of Materials Processing Technology, Vol. 87, pp. 107-111, 1999.
    43. Y. C. Lin, B. H. Yan, Y. S. Chang, “Machining characteristic of titanium alloy (Ti-6Al-4V)using a combination process of EDM with USM,” Journal of Materials Processing Technology, Vol. 104, pp. 171-177, 2000.
    44. N. Tosun, C. Cogun, H. Pihtili, “The effect of cutting parameters on wire crater sizes in wire EDM,” International Journal of Manufacturing Technology, Vol. 21, pp. 857-865, 2003.
    45. Y. S. Wong, M. Rahman, H. S. Lim, H. Han, N. Ravi, “Investigations of micro-EDM material removal characteristics using single RC-pulse discharges,” Journal of Materials Processing Technology, Vol. 140, pp. 303-307, 2003.
    46. V. Yadav, V. K. Jain, P. M. Dixit, “Thermal stresses due to electrical discharge machining,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 877-888, 2002.
    47. M. A. E.-R. Merdan and R. D. Arnell, “Surface integrity of a die steel after electrodischarge machining: 2. Residual stress distribution,” Surface Engineering, Vol. 7, No. 2, pp. 154-158, 1991.
    48. W. J. Tomlinson and J. R. Adkin, “Microstructure and Properties of Electrodischarge machined surfaces,” Surface Engineering, Vol. 8, No. 4, pp. 283-288, 1992.
    49. Y. Tsunekawa, M. Okumiya, N. Mohri, I. Takahashi, “Surface modification of aluminum by electrical discharge alloying,” Materials Science and Engineering, A174, pp. 193-198, 1994.
    50. J. P. Kruth, L. Stevens, L. Froyen, B. Lauwers, “Study of the white layer of a surface machined by die-sinking electro-discharge machining,” Annals of CIRP, Vol. 44, No. 1, pp. 169-172, 1995.
    51. Y. S. Wong, L. C. Lim, I. Rahuman, W. M. Tee, “Near-mirror-finish phenomenon in EDM using powder-mixed dielectric,“ Journal of Materials Processing Technology, Vol. 79, pp. 30-40, 1998.
    52. J. C. Rebelo, A. Morao Dias, D. Kremer, J. L. Lebrun, “Influence of EDM pulse energy on the surface integrity of martensitic steels,” Journal of Materials Processing Technology, Vol. 84, pp. 90-96, 1998.
    53. J. C. Rebelo, A. Morao Dias, Ruy Mesduita, Paulo Vassalo, Mario Santos, “An experimental study on electro-discharge machining and polishing of high strength copper-beryllium alloys,” Journal of Materials Processing Technology, Vol. 103, pp. 389-397, 2000.
    54. B. H. Yan, Y. C. Lin, F. Y. Huang, “Surface modification of Al-Zn-Mg alloy by combined electrical discharge machining with ball burnish machining,” Journal of Materials Processing, Vol. 42, pp. 925-934, 2002.
    55. S. Das, M. Klotz, F. Klocke, “EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses,“ Journal of Materials Processing Technology, Vol. 142, pp. 434-451, 2003.
    56. F. Ghanem, C. Braham, H. Sidhom, “Influence of steel type on electrical discharge machined surface integrity,“ Journal of Materials Processing, Vol. 142, pp. 163-173, 2003.
    57. S. O. Lee, X. P. Li, “Study of the surface integrity of the machined worlpiece in the EDM of tungsten carbide,“ Journal of Materials Processing, Vol. 139, pp. 315-321, 2003.
    58. D. Reynaerts, P. H. Heeren, H. van Brussel, “Microstructuring of silicon by electro-discharge machining(EDM)part I: theory,” Sensors and Actuators A, Vol. 60, pp. 212-218, 1997.
    59. C. van Osenbruggen, “Micro spark erosion,” Philips Technisch Tijdschrift, vol. 20, pp. 200-213, 1969.
    60. T. Sato, T. Mizutani and K. Kawata, “Electro-discharge machine for micro-hole drilling,” National Technical Report, vol. 31, pp. 725-733, 1985.
    61. T. Masuzawa, M. Fujino and K. Kobayashi, “Wire electro-discharge grinding for micro-machining,” Annals of the CIRP, Vol. 34, No. 1, pp. 431-434, 1985.
    62. T. Masuzawa, J. Tsukamoto, and M. Fujino, “Drilling of deep microholes at EDM,” Annals of the CIRP, Vol. 38, No. 1, pp. 195-198, 1989.
    63. T. Masuzawa, “Micro EDM,” Journal of Japan Society Precision Engineering, vol. 57, pp. 963-967, 1991.
    64. T. Masuzawa, C.-L. Kuo and M. Fujino, “A combined electrical machining process for micronozzle fabrication,” Annals of the CIRP, vol. 43, No. 1, pp. 189-192, 1994.
    65. Z. Y. Yu, T. Masuzawa, M. Fujino, “Micro-EDM for three dimensional cavities-development of uniform wear method,” Annals of the CIRP, vol. 47, No. 1, pp. 169-172, 1998.
    66. P. H. Heeren, D. Reynaerts, H. Van Brussel, C. Beuret, O. Larsson, A. Bertholds, “Microstructuring of silicon by electro-discharge machining (EDM) – Part II: Applications,” Sensors and Actuators A, Vol. 61, No. 1-3, pp. 379-386, 1997.
    67. T. Hirata, T. Akashi, A. Bertholds, H. P. Gruber, A. Schmid, M.-A. Gretillat, O. T. Guenat, N. F. de Rooij, “Novel pneumatic actuator system realized by microelectro-discharge machining,” Procceeding of the IEEE Micro Electro Mechanical Systems(MEMS), pp. 160-165, 1998.
    68. C. C. Liu, J. L Huang, “Micro-electro discharge machining of TiN/ Si3N4 composites,” British Ceramic Transactions, Vol. 99, No. 4, pp. 149-152, 2000.
    69. C. L. Kuo, J. D. Huang, H. Y. Liang, “Precise micro-assembly through an integration of micro-EDM and Nd-YAG,“ International Journal of Advanced Manufacturing Technology, Vol. 20, No. 6, pp. 454-458, 2002.
    70. S. H. Yeo, M. Murali, “A new technique using foil electrodes for the electro-discharge machining of micro grooves,” Journal of Micromechanics and Microengineering, Vol. 13, No. 1, pp. N1-N5, 2003.
    71. 邴兆齊, “放電加工鑽孔法量測殘留應力之可行性分析,” 成功大學機械工程研究所碩士論文, 1994.
    72. 葉麗雅, “放電加工鑽孔法量測殘留應力之應用研究,” 成功大學機械工程研究所碩士論文, 1995.
    73. 楊永名, “放電加工參數與加工表面特性對量測殘留應力之影響評估,” 成功大學機械工程研究所碩士論文, 1996.
    74. 童文煥, “放電加工鑽孔白層與引進殘留應力之關連性研究,” 成功大學機械工程研究所碩士論文, 1998.
    75. 林培欽, “放電加工鑽孔引進殘留應力之研究,” 成功大學機械工程研究所碩士論文, 1998.
    76. 許富銓, “ 放電加工鑽孔法量測殘留應力之校正研究,” 國立成功大學機械工程研究所碩士論文, 2000.
    77. 許多, “SKD11工具鋼殘留應力之放電工加工鑽孔量測法研究,” 國立成功大學機械工程研究所碩士論文, 2001.
    78. 于劍平, “放電加工表面特性之研究,” 國立成功大學機械工程研究所博士論文, 2002.
    79. 陳柏瑋, “尺寸效應對放電加工表面粗糙度及表面裂縫的影響,” 國立成功大學機械工程研究所碩士論文, 2003.
    80. 陳玉華, “放電加工之表面裂紋敏感性研究,” 國立成功大學機械工程研究所碩士論文, 2003.
    81. 董光雄, 放電加工, 復文書局, 1988.
    82. R. Bormann, “Getting Those Better EDM’d Surfaces,” Modern Machine Shop, Vol. 63, No. 9, pp.56-66, 1991.
    83. 黃錦鐘編譯, 最新放電加工技術, 全華科技圖書股份有限公司, 1987.
    84. 黃錦鐘譯, “放電加工技術之應用理論與實務, 雕模放電加工篇(一),” 機械月刊, 20卷, 7期, pp.293~303, 1987.
    85. 張謂川編譯, 放電加工的結構與實用技術, 全華科技圖書股份有限公司, 1993.
    86. 許坤明, “放電加工機用電氣回路之探討,” 機械技術, 第38期, pp. 100-105, 1988.
    87. R. Perez, N. Chiriotti, R. Demellayer, R. Flukiger, A. Zryd, “Investigation of Physical Process in Wire-EDM by Means of Single and Multiple Discharge Measurement and Analysis,” Proceedings of the13th International Symposium for Electromaching ( ISEM XIII ), vol.1, pp.473-483, 2001.
    88. F. J. Siebers, Funkenerosives Senken mit waessrigen Arbeitsmedien, Dissertation, RWTH Aachen, 1994.
    89. A. Karden, Funkenerosive Senkbearbeitung mit leistungssteigernden Elektrodenwerkstoffen und Arbeitsmedien, Dissertation, RWTH Aachen, 2001.
    90. Y. Y. Tsai, Electrode Wear in Micro-EDM, Dissertation, The University of Tokyo, 2001.
    91. T. Masuzawa, “Micro-EDM,” Proceedings of the13th International Symposium for Electromaching( ISEM XIII ), vol.1, pp.3-19, 2001.
    92. 葉思武譯, “微細放電加工的現狀,” 機械雜誌月刊, pp. 118-112, 民國89年4月.
    93. Z. L. Wang, W. S. Zhao, S. C. Di, G. X. Chi, “Advancements of micro-EDM,“ China Mechanical Engineering, Vol. 13, No. 10, pp. 894-898, 2002.
    94. 楊景堂, “微細放電加工技術.” 機械工業雜誌, pp. 193-200, 民國86年6月.
    95. 李驊登 , “不同放電加工條件下工件表面之缺陷分析,” 中華民國第四屆破壞科學研討會論文集, pp. 411~416, 1996.
    96. 陳中城, “CNC搖動放電加工表層特性之研究,” 高雄工專學報, 23期, pp. 351~363, 1993.
    97. T. Noethe, Funkenerosives Mikrobearbeitung von Stahl und Hartmetall durch Schneiden mit dunnen Draehten, Dissertation, RWTH Aachen, 2001.
    98. 緒方勳, “放電加工表面的殘留應力與變質層.” 應用機械工程, pp. 78-84, 1989.
    99. 黃俊琦編譯, 金屬材料手冊, 全華科技圖書股份有限公司, 1986.
    100. Metals Handbook, 9th, Volume 3, Properties and Selection: Stainless Steels, Tool Materials and Special- Purpose Metals”, 1980.
    101. ASM, Heat Treater’s Guide, 1986.
    102. YAWJET, CNC EDM21放電加工機操作手冊
    103. AGIE, Agietron Compact 3放電加工機操作手冊
    104. AGIE, Agietron EMT 1.10微細放電加工機操作手冊
    105. Panasonic, MG-ED72W微細放電加工機操作手冊
    106. P. J. Goodhew, J. Humphreys, R. Beanland, Electron Microscopy and Analysis, 3rd Edition, Taylor and Francis, New York, 2001.
    107. J. F. Watts, An Introduction to Surface Analysis by Electron Spectroscopy, Oxford University Press, New York, 1990.
    108. Philips, XL40電子顯微鏡操作手冊
    109. Zeiss, DSM982電子顯微鏡操作手冊
    110. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy, Bios Scientific Publishers, 1997.
    111. G. Z. Meng, Z. S. Zhang, Y. X. Nie, “Confocal Scanning Laser Microscopes,” Spectroscopy and Spectral Analysis, Vol.15, No.1, pp.109-113, 1995.
    112. Zeiss, PASCAL5雷射共焦掃瞄顯微鏡操作手冊
    113. J. C. Wyant, “White Light Interferometry,” Proceedings of SPIE – The International Society for Optical Engineering”, Vol. 4737, pp. 98-107, 2002.
    114. B. K. Rhoney, A. J. Shih, R. O. Scattergood, R. Ott, S. B. McSpadden, “Wear Mechanism of Metal Bond Diamond Wheels Trued by Wire Electrical Discharge Machining,” Wear, Vol. 252, pp. 644-653, 2002.
    115. Zygo, 5010白光干涉儀機操作手冊
    116. K. Yosida, Functional Analysis, 6th edition, Springer-Verlage, N. Y. pp. 8-12, 1980.
    117. H. T. Lee, Y. M. Yang, L. Y. Yeh, J. C. Biong, J. C. Chen, “Influence of EDM process parameters on surface defects and roughness,” Chinese Journal of Material Science, Vol.28, No.4, pp. 270-278,1996.
    118. R. Bormann, “Understanding Die-Sinking EDM Surface Integrity,” Carbide and Tool Journal, Vol. 20, No. 4, pp.12-16, 1988.
    119. 廖孟傑, 王文昇, 姚信字, 黃清安, 張毅, “放電線切割調質回火麻田散鐵系不鏽鋼粗切割表面顯微組織分析,” 中國機械工程學會第15屆全國學術研討會製造與材料論文集, pp. 503-507, 1998.
    120. Y. Youshen, M. Yoshitsugo, K. Hiedo, H. Tadaaki, “Analysis of crack generative region in crater machined by impulsive electrical discharge,” Journal of Japan Society for Precision Engineering, Vol. 60, No. 3, pp. 388-392, 1994.
    121. Y. Yakao, H. Tadashi, “Relationship between condition of electrical machining and depth of surface crack in cemented carbides,” Transactions of the Japan Society of Mechanical Engineering, Part C, Vol. 61, No. 583, pp. 1192-1197, 1995.
    122. Y. Y. Tsai, T. Masuzawa, M. Fujino, “Investigations on electrode wear in micro-EDM,” Proceedings of the13th International Symposium for Electromaching( ISEM XIII ), vol.1, pp.719-726, 2001.
    123. T. Ikai, K. Hashiguchi, “Heat input for crater formation in EDM,” Proceedings of the11th International Symposium for Electromaching( ISEM XI ), pp.163-170, 1995.
    124. F. Klocke, T. Noethe, “Wire-EDM polishing fundamental studies about surface formation and thermodynamical behaviour,” Production Engineering, Vol. III, pp. 29-32, 1996.
    125. W. Koenig, Fertigungsverfahren, VDI-Verlage GmbH, 1990.
    126. Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti, N. Mohri, “Fabrication of surface layer on stainless steel by electrical discharge machininig,” Materials and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.
    127. J. Stampfl, S. Scherer, M. Gruber, O. Kolednik, “Reconstruction of Surface Topographies by Scanning Electron Microscopy for Application in Fracture Research,” Applied Physics A, Vol. 63, pp. 341-346, 1996.

    下載圖示 校內:立即公開
    校外:2004-01-29公開
    QR CODE