| 研究生: |
洪英萁 Hung, Ying-Chi |
|---|---|
| 論文名稱: |
水熱法製備氧化鋅薄膜及結合基板轉移與化學蝕刻技術於垂直結構紫外光感測器之研製 Performance Enhancement of Hydrothermally Grown ZnO Based Ultraviolet Photodetectors Using Wafer Transfer and Surface Roughening Technologies |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氧化鋅 、水熱法 、異質接面 、垂直結構 、表面粗化 、紫外光感測器 |
| 外文關鍵詞: | ZnO, HTG, heterojunction, vertical structure, pyramidal surface textures, UV-PD |
| 相關次數: | 點閱:132 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用水熱法成長(Hydrothermal growth, HTG)氧化鋅(Zinc oxide, ZnO)薄膜並結合基板轉移與表面粗化技術,進行n-ZnO/p-CuO紫外光感測器(Ultra Violet Photo Detectors, UV-PDs)之開發與光電特性之探討。本論文所開發的基本論文使用水熱法成長(Hydrothermal growth, HTG)氧化鋅(Zinc oxide, ZnO)薄膜並結合基板轉移與表面粗化技術,進行n-ZnO/p-CuO紫外光感測器(Ultra Violet Photo Detectors, UV-PDs)之開發與光電特性之探討。本論文所開發的基板轉移技術(Wafer Transfer, WT)可輕易將HTG-ZnO薄膜與晶種層分離,並移除部份水熱成長初期具高缺陷密度的癒合層;相較於傳統直接以HTG-ZnO薄膜所製備水平結構UV-PD的光電特性,HTG-ZnO薄膜結合WT技術所製備具垂直結構的UV-PD不僅可進一步提升薄膜晶體品質,且具有較短電流傳導路徑、較均勻的電流分布以及較低的串聯電阻,展現較優異的光電特性,其中光響應強度、上升與下降時間分別為310倍、18 s及6 s。
HTG-ZnO薄膜結合WT與表面粗化技術所製備具垂直結構的UV-PD,不僅可將殘留癒合層全部移除且可蝕刻移除薄膜內部差排相關缺陷以更進一步提升薄膜晶體品質之外,可於HTG-ZnO表面所形成最穩定{101 ̅1}晶面的六角錐體粗化結構增加光的吸收,進一步改善光電特性,所得UV-PD的光響應強度、上升與下降時間分別為943倍、12 s及2 s。
另外,於本論文亦提出以HTG-ZnO薄膜結合化學機械研磨(Mechanical Polish, MP)之製程技術開發,藉由適化的MP製程不僅可移除相對較差品質的HTG-ZnO薄膜底部以提升薄膜晶體品質(ω-rocking curve之FWHM由1.28˚降至1.12˚)外,也可本論文使用水熱法成長(Hydrothermal growth, HTG)氧化鋅(Zinc oxide, ZnO)薄膜並結合基板轉移與表面粗化技術,進行n-ZnO/p-CuO紫外光感測器(Ultra Violet Photo Detectors, UV-PDs)之開發與光電特性之探討。本論文所開發的基板轉移技術(Wafer Transfer, WT)可輕易將HTG-ZnO薄膜與晶種層分離,並移除部份水熱成長初期具高缺陷密度的癒合層;相較於傳統直接以HTG-ZnO薄膜所製備水平結構UV-PD的光電特性,HTG-ZnO薄膜結合WT技術所製備具垂直結構的UV-PD不僅可進一步提升薄膜晶體品質,且具有較短電流傳導路徑、較均勻的電流分布以及較低的串聯電阻,展現較優異的光電特性,其中光響應強度、上升與下降時間分別為310倍、18 s及6 s。
HTG-ZnO薄膜結合WT與表面粗化技術所製備具垂直結構的UV-PD,不僅可將殘留癒合層全部移除且可蝕刻移除薄膜內部差排相關缺陷以更進一步提升薄膜晶體品質之外,可於HTG-ZnO表面所形成最穩定{101 ̅1}晶面的六角錐體粗化結構增加光的吸收,進一步改善光電特性,所得UV-PD的光響應強度、上升與下降時間分別為943倍、12 s及2 s。
另外,於本論文亦提出以HTG-ZnO薄膜結合化學機械研磨(Mechanical Polish, MP)之製程技術開發,藉由適化的MP製程不僅可移除相對較差品質的HTG-ZnO薄膜底部以提升薄膜晶體品質(ω-rocking curve之FWHM由1.28˚降至1.12˚)外,也可精準控制膜厚進一步達到薄化之目的(~300 nm)。
本研究所提出具簡易且低成本的水熱成長方式所磊晶成長之HTG-ZnO薄膜,結合本研究所開發的WT、SR或MP製程技術,不僅可應用於垂直結構UV-PDs製備可提升元件光電特性之展現,預期薄膜電晶體(TFTs)與發光二極體(LEDs)等元件應用亦深具潛力。
精準控制膜厚進一步達到薄化之目的(~300 nm)。
本研究所提出具簡易且低成本的水熱成長方式所磊晶成長之HTG-ZnO薄膜,結合本研究所開發的WT、SR或MP製程技術,不僅可應用於垂直結構UV-PDs製備可提升元件光電特性之展現,預期薄膜電晶體(TFTs)與發光二極體(LEDs)等元件應用亦深具潛力。
板轉移技術(Wafer Transfer, WT)可輕易將HTG-ZnO薄膜與晶種層分離,並移除部份水熱成長初期具高缺陷密度的癒合層;相較於傳統直接以HTG-ZnO薄膜所製備水平結構UV-PD的光電特性,HTG-ZnO薄膜結合WT技術所製備具垂直結構的UV-PD不僅可進一步提升薄膜晶體品質,且具有較短電流傳導路徑、較均勻的電流分布以及較低的串聯電阻,展現較優異的光電特性,其中光響應強度、上升與下降時間分別為310倍、18 s及6 s。
HTG-ZnO薄膜結合WT與表面粗化技術所製備具垂直結構的UV-PD,不僅可將殘留癒合層全部移除且可蝕刻移除薄膜內部差排相關缺陷以更進一步提升薄膜晶體品質之外,可於HTG-ZnO表面所形成最穩定{101 ̅1}晶面的六角錐體粗化結構增加光的吸收,進一步改善光電特性,所得UV-PD的光響應強度、上升與下降時間分別為943倍、12 s及2 s。
另外,於本論文亦提出以HTG-ZnO薄膜結合化學機械研磨(Mechanical Polish, MP)之製程技術開發,藉由適化的MP製程不僅可移除相對較差品質的HTG-ZnO薄膜底部以提升薄膜晶體品質(ω-rocking curve之FWHM由1.28˚降至1.12˚)外,也可精準控制膜厚進一步達到薄化之目的(~300 nm)。
本研究所提出具簡易且低成本的水熱成長方式所磊晶成長之HTG-ZnO薄膜,結合本研究所開發的WT、SR或MP製程技術,不僅可應用於垂直結構UV-PDs製備可提升元件光電特性之展現,預期薄膜電晶體(TFTs)與發光二極體(LEDs)等元件應用亦深具潛力。
The use of substrate transfer for the fabrication of vertical ultraviolet photodetectors (UV-PDs) based on hydrothermally grown (HTG) n-ZnO/sputtered p-CuO heterojunction (HJ) is demonstrated. As compared with that of the conventional device without wafer transfer, improvements in UV light responsivity (defined as the ratio of current density under UV 365 nm light irradiation to that of in dark) from 29 to 310 is obtained, which is attributed to the vertical structure enable a much shorter conduction path and make possible the removal of amorphous seed layer. With a further chemical etching to HTG ZnO layer after wafer transfer, pyramidal surface textures were formed and UV light response as high as 943 was obtained. The additional gain in photo responsivity is due to a reduced light reflection and the removal of highly-defected initial ZnO growth layer.
[1] M. Hua, C. Liu, S. Yang, Member, IEEE, Shenghou Liu, Kai Fu, Zhihua Dong, Yong Cai, Baoshun Zhang, and Kevin J. Chen, Fellow, IEEE, “GaN-Based Metal-Insulator-Semiconductor High-Electron-Mobility Transistors Using Low-Pressure Chemical Vapor Deposition SiNx as Gate Dielectric,” IEEE Electron Device Letters, Vol. 36, p. 448, 2015.
[2] T. Palacios, Student Member, IEEE, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, Senior Member, IEEE, and U. K. Mishra, Fellow, IEEE, “AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers,” IEEE Electron Device Letters, Vol. 27, p. 13, 2006.
[3] D. Liu, D. Francis, F. Faili, C. Middleton, J. Anaya, J. W. Pomeroy, D. J. Twitchen, Martin Kubal, “Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices,” Scripta Materialia, Vol. 128, p. 57, 2017.
[4] Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, G. Wang, “A Power-Type Single GaN-Based Blue LED With Improved Linearity for 3 Gb/s Free-Space VLC Without Pre-equalization,” IEEE Photonics Journal, Vol.8 , pp. 1, 2016.
[5] Y. Wan, S. Gao, L. Li, J. Zhang, H. Fan, S. Jiao, J. Wang, Q. Yu, D. Wang, “Efficient UV photodetector based on heterojunction of n-ZnO nanorods/p-diamond film,’’ Journal of Materials Science: Materials in Electronics, Vol. 28, p. 11172, 2017.
[6] F. Teng, L. Zheng, K. Hu, H. Chen, Y. Li, Z. Zhang and X. Fang, “A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector,” Journal of Materials Chemistry C, Vol. 4, p. 8416, 2016.
[7] S. Joshi, M. Mudigere, L. Krishnamurthy and G. L. Shekar,“Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications,” Chemical Papers, Vol.68, p. 1584, 2014.
[8] Z. Feng, R. Jia, B. Dou, H. Li, Z. Jin, X. Liu, F. Li, W. Zhang, and C. Wu, “Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application,” Applied Physics Letters, Vol. 106, p. 053118, 2015.
[9] M. Kevin, W. H. Tho, G. W. Ho, “Transferability of solution processed epitaxial Ga:ZnO films; tailored for gas sensor and transparent conducting oxide applications,” Journal of Materials Chemistry., Vol. 22, p. 16442, 2012.
[10] L.S. Vikasa, K.A. Vanajac, P.P. Subhaa, M.K. Jayaraj, “Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction,” Sensors and Actuators A, Vol. 242, p. 116 (2016).
[11] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Applied Physics Letters,Vol. 85, p. 36891, 2004.
[12] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on and ternary alloy films,” Applied Physics Letters, Vol. 78, p. 1237, 2001.
[13] W. Ye, W. Ren, Z. Wang, P. S. Yang, W. Jing, Z. Jiang,“Effect of excess Bi2O3 on structure and performance of ZnO-based thin film transistors,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 33, p. 061206, 2015.
[14] W. Zhong, G. Li, R. Chen, L. Lan, X. Zhang, W. Pei, H. Chen, S. Deng, “A Study on the Bottom-gate ITO-stabilized ZnO Thin-Film Transistors,” 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC).
[15] D. Wan, X. Liu, A. Abliz, C. Liu, Y. Yang , W. Wu, G. Li , J. Li, H. Chen, T. Guo, and Lei Liao, “Design of Highly Stable Tungsten-Doped IZO Thin-Film Transistors With Enhanced Performance,” IEEE Transactions On Electron Devices, Vol. 65, p. 1018, 2018.
[16] X. Ding, H. Zhang, J. Zhang, J. Li, W. Shi, X. Jiang, Z. Zhang, “IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures,” Materials Science in Semiconductor Processing, Vol. 29, p. 69, 2015.
[17] Y. B. Hahn, “Zinc oxide nanostructures and their applications,” Korean Journal of Chemical Engineering., Vol. 28, p. 1797, 2011.
[18] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters, Vol. 80, p. 4232, 2002.
[19] X. Liu, H. Du, P. Wang, T. T. Lim, X. W. Sun, “A high-performance UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates,” Journal of Materials Chemistry. C, Vol. 2, p. 9536, 2014.
[20] H. Makhlouf, C. Karam, AminaLamouchi, S. Tingry, PhilippeMiele, R. Habchi, R. Chtourou, M. Bechelany, “Analysis of ultraviolet photo-response of ZnO nanostructures prepared by electrodeposition and atomic layer deposition,” Applied Surface Science, Vol. 444, p. 253, 2018.
[21] R. Alchaar, H. Makhlouf, N. Abboud, S. Tingry, R. Chtourou, M. Weber, M. Bechelany, “Enhanced UV photosensing properties of ZnO nanowires prepared by electrodeposition and atomic layer deposition,” Journal of Solid State Electrochemistry, Vol. 21, p. 2877, 2017.
[22] A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk,G. Lashkarev, R. Yakimova, V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices and Microstructures, Vol. 117, p. 121, 2018.
[23] H.R. Bakhsheshi-Rad, E. Hamzah, George J. Dias, Safaa N. Saud, F. Yaghoubidoust, Z. Hadisi, “Fabrication and characterisation of novel ZnO/MWCNT duplex coating deposited on Mg alloy by PVD coupled with dip-coating techniques,” Journal of Alloys and Compounds, Vol. 728, p. 159, 2017.
[24] O. W. Kennedy, M. L. Coke, E. R. White, M. S.P. Shaffer, P. A. Warburton, “MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction,” Materials Letters, Vol. 212, p. 51, 2018.
[25] Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum, Vol. 118, p. 48, 2015.
[26] L. Su, Q. Zhang, T. Wu, M. Chen, Y. Su, Y. Zhu, R. Xiang, X. Gui, and Z. Tang, “High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction,” Applied Physics Letters, Vol. 105, p. 072106 2014.
[27] W. Dai, X. Pan, S. Chen, C. Chen, Z. Wen, H. Zhang and Z.Ye, “Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance,” Journal of Materials Chemistry C, Vol. 2, p. 4606, 2014.
[28] S. B. Wang, C. H. Hsiao, S. J. Chang, Senior Member, IEEE, Z. Y. Jiao, Sheng-Joue Young, Shang-Chao Hung, and Bohr-Ran Huang, “ZnO Branched Nanowires and the p-CuO/n-ZnO Heterojunction Nanostructured Photodetector,” IEEE Transactions on Nanotechnology, Vol. 12, p. 263, 2013.
[29] C. Xiao, Y. Wang, T. Yang, Y. Luo, M. Zhang, “Preparation of ZnO/ZnSe heterostructure parallel arrays for photodetector application,” Applied Physics Letters, Vol. 109, p. 043106, 2016.
[30] https://www.researchgate.net/figure/311776176_fig1_Figure-1-Ionic-structure-and-optical-absorption-coefficient-of-CuO-a-Molecule.
[31] F. Wei, L. Liu, G. Li, “Zinc Oxide/Copper Oxide Heterogeneous NanowirePreparation and Application in UV Sensor,” 14th IEEE International Conference on Nanotechnology, 2014.
[32] S. B. Wang, C. H. Hsiao, S. J. Chang, Senior Member, IEEE, Z. Y. Jiao, Sheng-Joue Young, Shang-Chao Hung, and Bohr-Ran Huang, “ZnO Branched Nanowires and the p-CuO/n-ZnO Heterojunction Nanostructured Photodetector,” IEEE Transactions On Nanotechnology, Vol. 12, p. 263, 2013.
[33] Z. Assefa, M. Garmyn, R. Bouillon, “Differential Stimulation of ERK and JNK Activities by Ultraviolet B Irradiation and Epidermal Growth Factor in Human Keratinocytes,” Investigative Dermatology, Vol. 108, p.886, 1997.
[34] https://dacota.tw/blog/post/33385456.
[35] Lutron Electronic Enterprise Co., Ltd., from http://www.lutron.com.tw/Default.asp.
[36] L.S. Vikas, K.A. Vanaja, P.P. Subha, M.K. Jayaraj, “Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction,” Sensors and Actuators A: Physical, Vol. 242, p. 116, 2016.
[37] L. Su, Q. Zhang, T. Wu, M. Chen, Y. Su, Y. Zhu, R. Xiang, X. Gui, and Z. Tang, “High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction,” Applied Physics Letters, Vol. 105, p. 072106, 2014.
[38] W. Dai, X. Pan, S. Chen, C. Chen, Z. Wen, H. Zhang and Z. Ye, “Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance,” Journal of Materials Chemistry C, Vol. 2, p. 4606, 2014.
[39] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” SPIE Conference Proceedings, vol. 7603, p.76031O-1, 2010.
[40] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO,” Thin Solid Films, vol.445, p. 317, 2003.
[41] L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, “Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection,” Applied Physics Letters, vol.88, pp.092103-1~092103-3, 2006.
[42] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” Journal of Applied Physics, vol. 101, p. 114508, 2007.
[43] B. Zhao, F.Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-Blind Avalanche Photodetector Based On Single ZnO–Ga2O3 Core–Shell Microwire,” Nano Letters., Vol. 15, pp. 3988, 2015.
[44] M. Hintikka and J. Kostamovaara, “Time Domain Characterization of Avalanche Photo Detectors for Sub-ns Optical Pulses,” 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings.
[45] http://www.pveducation.org/pvcdrom/materials/cuo.
[46] M. Nawaz, E. Marstein, and A. Holt, “Design analysis of ZnO/cSi heterojunction solar cell,” in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, p. 002213, 2010.
[47] L. Anderson., “Germanium-Gallium Arsenide Heterojunctions,” IBM Journal of Research and Development, Vol. 4, p. 283, 1960.
[48] 劉博文,光電元件導論、2007年。
[49] O. Katz, V. Garber, B. Meyler, et al., "Gain mechanism in GaN Schottky ultraviolet detectors," Applied Physics Letters, Vol. 79, p. 1471, 2001.
[50] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Applied Physics Letters, Vol. 92, p. 113505, 2008.
[51] Y.X. Zhang, G.H. Li , Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chemical Physics Letters, Vol. 365, p. 300, 2002.
[52] S. Li, H. Zhang, Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, Vol. 15, p. 1428, 2004.
[53] A. A. B. R. A. Laudise, "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide", The Journal of Physical Chemistry , Vol. 64, p. 688 (1960).
[54] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie, Vol. 115, p. 3139, 2003.
[55] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, “Lateral Epitaxial Overgrowth of ZnO in Water at 90 °C,” Nanotechnology, Advanced Functional Materials,Vol. 16, p. 799, 2006.
[56] Q. Liao, Y. Yang, L. Xia, J. Qi, Y. Zhang, Y. Huang, and Z. Qin, “High intensity, plasma-induced emission from large area ZnO nanorod array cathodes,” Physics of Plasmas. Vol. 15, p. 114505, 2008.
[57] J. A. Kim, I. Ki.Kim , T. W. Kim, J. H. Moon, J. H. Kim, “Controlling the Surface Morphology of ZnO Films Grown on Glass Substrates by Hydrothermal Method at 90oC: Effects of Na-Citrate on the Shape of ZnO Nano-Crystallites,” Journal of Nanoscience and Nanotechnology, Vol. 8, p. 5485, 2008.
[58] M. Podlogar, D. Vengust1, J. J. Richardson, M. Strojnik, M. Mazaj, G. Trefalt, N. Daneu, A. Recˇnik, S. Bernik, “Parametric study of seed‐layer formation for low‐temperature hydrothermal growth of highly oriented Zn O films on glass substrates,” Phys. Status Solidi A, Vol. 210, p. 1083, 2013.
[59] Y.G. Chen, M. Ogura, S. Yamasaki, H. Okushi, “Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model,” Diamond & Related Materials, Vol. 13, p. 2121, 2004.
[60] H. Wang, Q. Pan, Y. Cheng, J. Zhao, G. Yin, “Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative wlwctrodes for lithium-ion batteries,” Electrochimica Acta, Vol. 54, p. 2851, 2009.
[61] Y. Gao, T. Fuji, R. Shama, K. Fujito, S. P. Denbarrs, S. Nakamura, and E. L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching,” Japanese Journal of Applied Physics, Vol. 43, p. L637, 2004.
[62] H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching,” Journal of Applied Physic., Vol. 94, p. 650, 2003.
[63] N. Ohashi, K. Takahashi, S. Hishita, I. Sakaguchi, H. Funakubo, and H. Haneda, “Fabrication of ZnO Microstructures by Anisotropic Wet-Chemical Etching,” Journal of The Electrochemical Society, Vol., 154, p. D82, 2007.
[64] D. Zhuang and J. H. Edgar, “Wet etching of GaN, AlN, and SiC: a review,” Materials Science and Engineering: R, Vol. 48, p. 1, 2005.
[65] H. Maki, T. Ikoma, I. Sakaguchi, N. Ohashi, H. Haneda, J. Tanaka, and N. Ichinose, “Control of surface morphology of ZnO by hydrochloric acid (0001 ̅) etching,” Thin Solid Films, Vol. 411, p. 91, 2002.
[66] O. Dulub, U. Diebold, and G. Kresse, “Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn,” Physical Review Letters, Vol. 90, p. 016102, 2003.
[67] A. A. Fashina, K. K. Adama, O. K. Oyewole, V. C. Anye, J. Asare,M. G. Zebaze Kana, and W. O. Soboyejo, “Surface texture and optical properties of crystalline silicon substrates,” Journal of Renewable and Sustainable Energy, Vol. 7, p. 063119, 2015.
[68] L. S. Vikas, K. C. Sanal, M. K. Jayaraj, A. Antony, and J. Puigdollers, “Vertically aligned ZnO nanorod array/CuO heterojunction for UV detector application,” Physica Status Solidi A, Vol. 211, p. 2493, 2014.
[69] A. Echresh, C. O. Chey, M. Z. Shoushtari, V. Khranovskyy, O. Nur, M. Willander, “UV photo-detector based on p-NiO thin film/n-ZnO nanorods eterojunction prepared by a simple process,” Journal of Alloys and Compounds, Vol. 632, p. 165, 2015.
[70] Z. Bai, M. Fu, Y. Zhang, “Vertically aligned and ordered ZnO/CdS nanowire arrays for self-powered UV–visible photosensing,” Journal of Materials Science, Vol. 52, p. 1308, 2017.
[71] D. C. Perng, H. P. Lin, and M. H. Hong, “High-performance ultraviolet detection and visible-blind photodetector based on Cu2O/ZnO nanorods with poly-(N-vinylcarbazole) intermediate layer,” Applied Physics Letters, Vol. 107, 241113, p. 241113, 2015.
[72] P. Hazra, S. K. Singh, and S. Jit, “Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer,” Journal of Semiconductor Technology And Science, Vol. 14, p. 117, 2014.
[73] From https://zh.wikipedia.org/zh-tw/莫氏硬度.