簡易檢索 / 詳目顯示

研究生: 謝其丞
Hsieh, Chi-Cheng
論文名稱: 以逆運算法估算錫棒與鋁棒之邊界熱通量
Boundary Heat Flux of Pure Tin and Aluminum by Using Inverse Methods
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 邊界熱通量逆運算連續迭代法
外文關鍵詞: boundary heat flux, Beck inverse method, Successive substitution method
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對純鋁與純錫,透過逆運算法以及連續迭代法配合實驗數據所量測的溫度來估算其邊界熱通量隨時間的變化。為確保其估算結果的可信度,透過一維暫態熱傳問題之解析解與數值解進行反算,並且比較及驗證其結果。
    透過兩種不同的金屬鑄件以及兩種不同的邊界條件反覆進行實驗,並通過量測出來的溫度以Beck逆運算法不同步法數與連續迭代法估算出邊界熱通量並比對各方法之結果,再將估算出的熱通量藉由一維暫態熱傳問題的模式求解其溫度分佈,並與實驗之溫度分佈進行比對,以此驗證逆運算法之可行性。
    由結果顯示,逆運算法與連續迭代法對於求解其邊界進出之熱通量有良好的結果,有助於日後相關研究的發展。但是由於計算方式屬於一維模式,因此對於徑向熱傳之估算會有遺漏。

    This study is to estimate the change of boundary heat flux with time for pure aluminum and pure tin, measured by beck inverse and Successive substitution method combined with experimental data. In order to ensure the credibility of the estimation results, the analytical solution and the numerical solution of the one-dimensional transient heat transfer problem are inversely calculated, and the results are compared and verified.
    Experiments were carried out through two different metal castings and two different boundary conditions, and the boundary heat flux was estimated by the different time steps of Beck inverse and Successive substitution method by the measured temperature and compared with each method. As a result, the estimated heat flux is solved by the one-dimensional transient heat transfer problem model and compared with the experimental temperature distribution to verify the feasibility of the Inverse methods.
    The results show that the Beck inverse and Successive substitution method have good results for solving the heat flux in and out of the boundary, which is helpful for the development of related research in the future. However, since the calculation method belongs to the one-dimensional mode, there is a gap in the estimation of the radial heat transfer.

    摘要 I ABSTRACT II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號 XXIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與目的 2 1.3 文獻回顧 3 第二章 逆向熱傳法之理論模式 7 2.1 逆向熱傳問題 7 2.2 線性暫態熱傳導 8 2.2.1 線性暫態熱傳模式 8 2.3 逆運算法 9 2.3.1 Beck逆運算法的處理模式 9 2.3.2 連續迭代法 12 第三章 實驗設備與方法 15 3.1 實驗步驟 15 3.2實驗參數 17 3.3 實驗設備介紹 17 3.3.1 熔解爐 17 3.3.2 鑄件外模 18 3.3.3 熱電偶點焊機 18 3.3.4 K type熱電偶線 18 3.3.5 加熱控制設備 18 3.3.6 玻璃纖維材料 19 3.3.7 散熱端溫度控制設備 19 3.3.8 溫度擷取設備 19 3.3.8 砂輪切割機 20 3.3.9 密度比重計 20 3.3.10 桌上型鑽床 20 3.3.11 散熱膏 20 3.4 實驗數據整理 21 第四章 數值分析 36 4.1 線性暫態熱傳問題 36 4.1.1 直接問題 36 4.1.2 逆向問題 37 4.2 數值方法 38 4.2.1 有限差分法(Finite Difference method) 38 4.3 一維暫態熱傳問題 39 4.4 驗證逆運算求解一維暫態熱傳問題 41 第五章 結果與討論 47 5.1 純錫金屬之CASE A邊界熱通量預測 47 5.2 純錫金屬之CASE B邊界熱通量預測 49 5.3 純鋁金屬之CASE A邊界熱通量預測 50 5.4 純鋁金屬之CASE B邊界熱通量預測 51 5.5 比較BECK逆運算法不同步法數之結果 52 5.6 驗證校正點的溫度 53 5.6.1 純錫Case A逆運算之反算模擬溫度 53 5.6.2 純錫Case B逆運算之反算模擬溫度 53 5.6.3 純鋁Case A逆運算之反算模擬溫度 54 5.6.4 純鋁Case B逆運算之反算模擬溫度 54 第六章 結論 88 參考文獻 90

    [1] S.T.Chiang,Computational Fluid Dynamics For Engineers:Engineer Education System,1993.
    [2] N. Shumakov,”A method for the experimental study of the process of heating a solid body,”Soviet Physics-Technical Physics, vol.2,pp.771-781,1957.
    [3] G. Stolz,”Numerical solutions to an inverse problem of heat conduction for simple shapes,”Journal of heat transfer,vol.82,pp.20-25,1960.
    [4] J. V. Beck,’’Calculation of suface Heat Flux from an Integral Temperature History,’’ASME Paper 62-HT-46 1962.
    [5] E. Sparrow,A.Haji-Sheikh,and T.Lundgren,”The inverse problem in transient heat conduction,”Journal of Applied Mechanics,vol.31,pp.369-375,1964.
    [6] J. V. Beck,”Surface heat flux determination using an integral method,”Nuclear Engineering and Design,vol.7,pp.170-178,1968.
    [7] J. V. Beck,”Nonlinear estimation applied to the nonlinear inverse heat conduction problem,”International Journal of Heat and Mass Transfer,vol.13,pp.703-716,1970.
    [8] Y. Jarny,M. Ozisik,and J. Bardon,”A general optimization method using adjoint equation for solving multidimensional inverse heat conduction,” International Journal of Heat and Mass Transfer,vol.34,pp.2911-2919,1991.
    [9] A. Abbas Nejad,M. J. Maghrebi,H. Basirat Tabrizi,Y. Heng,A. Mhamdi,and W. Marquardt,”Optimal operation of alloy material on solidification process with inverse heat transfer,” International Communication in Heat and Mass Transfer,vol.37,pp.771-716,2010.
    [10] 紀欽仁,”逆向熱傳方法之材料熱性質預測,” 國立成功大學工程科學所碩士論文,1998.
    [11] 郭孟遠,”材料凝固熱性質之估算,” 國立成功大學工程科學所碩士論文,1999.
    [12] 林立勝,”凝固熱性質之估算,” 國立成功大學工程科學所碩士論文,2000.
    [13] 陳毓儒,”金屬之熱傳導係數預測,” 中華民國第二十七屆力學會議,2003十二月.
    [14] 陳佩宜,”方向性凝固之界面熱傳與溫度場分析,” 國立成功大學工程科學所碩士論文,2011.
    [15] 徐意庭,”以逆運算法與總容量法估算錫鉛合金方向性凝固之界面熱傳係數,” 國立成功大學工程科學所碩士論文,2014.
    [16] 李盈甫,’’以逆運算方法估測高速主軸之熱對流係數’’私立逢甲大學機械與電腦輔助工程學系碩士論文,2017.
    [17] 林柏懷,’’簡易熱逆運算法預測材料熱物性之探討’’私立逢甲大學機械與電腦輔助工程學系碩士論文,2017.
    [18] N. Cheung,I. L. Ferreira,M. M. Pariona,J. M. V. Quaresma,and A. Garcia,”Melt characteristics and solidification growth direction with respect to gravity affecting the interfacial heat transfer coefficient of chill castings,”Materials & Design,vol.30,pp.3592-3601,2009.
    [19] O. M.Alifanov and O. M. Alifanov,Inverse heat transfer problems:Springer,1994.
    [20] M. Martorano and J. Capocchi,”Heat transfer coefficient at the metal-mould interface in the unidirectional solidification of Cu-8% Sn alloys,” International Journal of Heat and Mass Transfer,vol.43,pp.2541-2552,2000.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE