簡易檢索 / 詳目顯示

研究生: 張芳瑄
Chang, Fang-Hsuan
論文名稱: 干擾葉酸-單碳循環代謝衡定對黑色素細胞的影響
Impact of disturbed folate-mediated one-carbon metabolic homeostasis on melanocytes
指導教授: 傅子芳
Fu, Tzu-Fun
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 52
中文關鍵詞: 斑馬魚黑色素細胞瘤黑色素細胞葉酸氨甲蝶呤
外文關鍵詞: zebrafish, melanoma, melanocyte, folate, methotrexate
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract I 摘要 II Acknowledgment III Contents of Figures VII Abbreviations VIII Introduction 1 Specific Aim 7 Materials and methods 8 RESULT 13 Discussion 42 Reference 46 Appendix 52

    1. Zaidi, M.R., D.E. Fisher, and H. Rizos, Biology of Melanocytes and Primary Melanoma, in Cutaneous Melanoma, C. Balch, et al., Editors. 2019, Springer International Publishing: Cham. p. 1-38.
    2. Simon, J.D., et al., Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res, 2009. 22(5): p. 563-79.
    3. Park, H.Y., et al., Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci, 2009. 66(9): p. 1493-506.
    4. Miller, A.J. and M.C. Mihm, Jr., Melanoma. N Engl J Med, 2006. 355(1): p. 51-65.
    5. Saginala, K., et al., Epidemiology of Melanoma. Med Sci (Basel), 2021. 9(4).
    6. Whiteman, D.C., A.C. Green, and C.M. Olsen, The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. J Invest Dermatol, 2016. 136(6): p. 1161-1171.
    7. Sample, A. and Y.Y. He, Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed, 2018. 34(1): p. 13-24.
    8. Elwood, J.M. and J. Jopson, Melanoma and sun exposure: an overview of published studies. Int J Cancer, 1997. 73(2): p. 198-203.
    9. Whiteman, D.C., C.A. Whiteman, and A.C. Green, Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control, 2001. 12(1): p. 69-82.
    10. Ascierto, P.A., et al., The role of BRAF V600 mutation in melanoma. J Transl Med, 2012. 10: p. 85.
    11. Domingues, B., et al., Melanoma treatment in review. Immunotargets Ther, 2018. 7: p. 35-49.
    12. Ebara, S., Nutritional role of folate. Congenit Anom (Kyoto), 2017. 57(5): p. 138-141.
    13. Bailey, L.B., Dietary reference intakes for folate: the debut of dietary folate equivalents. Nutr Rev, 1998. 56(10): p. 294-9.
    14. Suh, J.R., A.K. Herbig, and P.J. Stover, New perspectives on folate catabolism. Annu Rev Nutr, 2001. 21: p. 255-82.
    15. Fox, J.T. and P.J. Stover, Folate-mediated one-carbon metabolism. Vitam Horm, 2008. 79: p. 1-44.
    16. Gross, R.L., et al., Depressed cell-mediated immunity in megaloblastic anemia due to folic acid deficiency. Am J Clin Nutr, 1975. 28(3): p. 225-32.
    17. Verhaar, M.C., E. Stroes, and T.J. Rabelink, Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol, 2002. 22(1): p. 6-13.
    18. Smithells, R.W., S. Sheppard, and C.J. Schorah, Vitamin deficiencies and neural tube defects. Arch Dis Child, 1976. 51(12): p. 944-50.
    19. Henry, C.J., et al., Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis. Haematologica, 2017. 102(12): p. 1985-1994.
    20. Ulrich, C.M. and J.D. Potter, Folate supplementation: too much of a good thing? Cancer Epidemiol Biomarkers Prev, 2006. 15(2): p. 189-93.
    21. Liew, S.C., Folic acid and diseases - supplement it or not? Rev Assoc Med Bras (1992), 2016. 62(1): p. 90-100.
    22. Blount, B.C., et al., Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3290-5.
    23. Tas, F., K. Erturk, and H.O. Soydinc, Serum folate and vitamin B12 levels in cutaneous melanoma. J Cosmet Dermatol, 2021. 20(9): p. 3007-3010.
    24. Qin, X., et al., Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials. Int J Cancer, 2013. 133(5): p. 1033-41.
    25. Dhana, A., et al., Intake of folate and other nutrients related to one-carbon metabolism and risk of cutaneous melanoma among US women and men. Cancer Epidemiol, 2018. 55: p. 176-183.
    26. Weinblatt, M.E., et al., Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med, 1985. 312(13): p. 818-22.
    27. Bonadonna, G., et al., Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N Engl J Med, 1995. 332(14): p. 901-6.
    28. Freeman, A.I., et al., Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children. N Engl J Med, 1983. 308(9): p. 477-84.
    29. Kremer, J.M., Toward a better understanding of methotrexate. Arthritis Rheum, 2004. 50(5): p. 1370-82.
    30. Cronstein, B.N., The mechanism of action of methotrexate. Rheum Dis Clin North Am, 1997. 23(4): p. 739-55.
    31. Kufe, D.W., M.M. Wick, and H.T. Abelson, Natural resistance to methotrexate in human melanomas. J Invest Dermatol, 1980. 75(4): p. 357-9.
    32. Buchbinder, R., et al., Incidence of melanoma and other malignancies among rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum, 2008. 59(6): p. 794-9.
    33. Polesie, S., et al., Methotrexate treatment for patients with psoriasis and risk of cutaneous melanoma: a nested case-control study. Br J Dermatol, 2020. 183(4): p. 684-691.
    34. Polesie, S., et al., Methotrexate treatment and risk for cutaneous malignant melanoma: a retrospective comparative registry-based cohort study. Br J Dermatol, 2017. 176(6): p. 1492-1499.
    35. Hood, A.F., Cutaneous side effects of cancer chemotherapy. Med Clin North Am, 1986. 70(1): p. 187-209.
    36. Sáez-Ayala, M., et al., Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell, 2013. 24(1): p. 105-19.
    37. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
    38. Bootorabi, F., et al., Zebrafish as a Model Organism for the Development of Drugs for Skin Cancer. Int J Mol Sci, 2017. 18(7).
    39. Dahm, R. and R. Geisler, Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol (NY), 2006. 8(4): p. 329-45.
    40. Sertori, R., et al., Genome editing in zebrafish: a practical overview. Brief Funct Genomics, 2016. 15(4): p. 322-30.
    41. Elias, P.M., Stratum corneum defensive functions: an integrated view. J Invest Dermatol, 2005. 125(2): p. 183-200.
    42. Hunt, T.K., H. Hopf, and Z. Hussain, Physiology of wound healing. Adv Skin Wound Care, 2000. 13(2 Suppl): p. 6-11.
    43. Rodrigues, M., et al., Wound Healing: A Cellular Perspective. Physiol Rev, 2019. 99(1): p. 665-706.
    44. Broughton, G., 2nd, J.E. Janis, and C.E. Attinger, The basic science of wound healing. Plast Reconstr Surg, 2006. 117(7 Suppl): p. 12s-34s.
    45. Gonzalez, A.C., et al., Wound healing - A literature review. An Bras Dermatol, 2016. 91(5): p. 614-620.
    46. Naomi, R., et al., Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel), 2021. 14(10).
    47. Xie, Y., A.H. Meijer, and M.J.M. Schaaf, Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol, 2020. 8: p. 620984.
    48. Miskolci, V., et al., Distinct inflammatory and wound healing responses to complex caudal fin injuries of larval zebrafish. Elife, 2019. 8.
    49. McPhedran, P., et al., Interpretation of electronically determined macrocytosis. Ann Intern Med, 1973. 78(5): p. 677-83.
    50. Chi, W.Y., et al., The cooperative interplay among inflammation, necroptosis and YAP pathway contributes to the folate deficiency-induced liver cells enlargement. Cell Mol Life Sci, 2022. 79(8): p. 397.
    51. Tan, J.L., et al., Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell, 2016. 62(1): p. 34-46.
    52. Santoriello, C., et al., RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells. Nat Cell Biol, 2020. 22(4): p. 372-379.
    53. Sporrij, A. and L.I. Zon, Nucleotide stress responses in neural crest cell fate and melanoma. Cell Cycle, 2021. 20(15): p. 1455-1467.
    54. Gao, F.L., et al., The contribution of melanocytes to pathological scar formation during wound healing. Int J Clin Exp Med, 2013. 6(7): p. 609-13.
    55. de Souza, K.S., et al., Improved cutaneous wound healing after intraperitoneal injection of alpha-melanocyte-stimulating hormone. Exp Dermatol, 2015. 24(3): p. 198-203.
    56. Sarsour, E.H., et al., Redox control of the cell cycle in health and disease. Antioxid Redox Signal, 2009. 11(12): p. 2985-3011.
    57. Malagoli, C., et al., Diet Quality and Risk of Melanoma in an Italian Population. J Nutr, 2015. 145(8): p. 1800-7.
    58. Liu, J., et al., Higher Caffeinated Coffee Intake Is Associated with Reduced Malignant Melanoma Risk: A Meta-Analysis Study. PLoS One, 2016. 11(1): p. e0147056.
    59. Stahl, W. and H. Sies, Carotenoids and protection against solar UV radiation. Skin Pharmacol Appl Skin Physiol, 2002. 15(5): p. 291-6.
    60. Anstey, A.V., Systemic photoprotection with alpha-tocopherol (vitamin E) and beta-carotene. Clin Exp Dermatol, 2002. 27(3): p. 170-6.
    61. Colston, K., M.J. Colston, and D. Feldman, 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology, 1981. 108(3): p. 1083-6.
    62. Naldi, L., et al., Risk of melanoma and vitamin A, coffee and alcohol: a case-control study from Italy. Eur J Cancer Prev, 2004. 13(6): p. 503-8.
    63. Olsen, N.J., C.F. Spurlock, 3rd, and T.M. Aune, Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther, 2014. 16(1): p. R17.
    64. Kao, T.T., et al., Methotrexate-induced decrease in embryonic 5-methyl-tetrahydrofolate is irreversible with leucovorin supplementation. Zebrafish, 2013. 10(3): p. 326-37.
    65. Sun, S., et al., Effects of methotrexate on the developments of heart and vessel in zebrafish. Acta Biochim Biophys Sin (Shanghai), 2009. 41(1): p. 86-96.
    66. Branda, R.F., et al., Effects of folate deficiency on the metastatic potential of murine melanoma cells. Cancer Res, 1988. 48(16): p. 4529-34.
    67. Tu, H.C., et al., One crisis, diverse impacts-Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PLoS One, 2017. 12(11): p. e0188585.
    68. Hsiao, T.H., et al., The Incoherent Fluctuation of Folate Pools and Differential Regulation of Folate Enzymes Prioritize Nucleotide Supply in the Zebrafish Model Displaying Folate Deficiency-Induced Microphthalmia and Visual Defects. Front Cell Dev Biol, 2021. 9: p. 702969.
    69. Sarna, M., et al., Melanin presence inhibits melanoma cell spread in mice in a unique mechanical fashion. Sci Rep, 2019. 9(1): p. 9280.
    70. Slominski, A.T. and J.A. Carlson, Melanoma resistance: a bright future for academicians and a challenge for patient advocates. Mayo Clin Proc, 2014. 89(4): p. 429-33.
    71. Brożyna, A.A., et al., Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Pathol, 2013. 44(10): p. 2071-4.
    72. Higdon, C.W., R.D. Mitra, and S.L. Johnson, Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One, 2013. 8(7): p. e67801.

    無法下載圖示 校內:2027-08-29公開
    校外:2027-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE