簡易檢索 / 詳目顯示

研究生: 陳榮發
Chen, Rong-Fa
論文名稱: 利用光達點雲資料自動化建置街道圖效率評估與分析
The Efficiency Evaluation of Automatically Producing Street Maps by Point Clouds of LIDAR
指導教授: 余騰鐸
Yu, Teng-Duo
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 街道圖光達正規化自動化邊緣萃取
外文關鍵詞: Street Map, LiDAR, Standardization, Automation, Edge Extraction
相關次數: 點閱:75下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以空載(ALS)、地載(TLS)及車載(MLS)三種光達於不同道路做資料自動化篩選的分析與探討,利用光達對物表所產生的三維坐標數據-點雲資料做道路輪廓萃取。主要以結合點雲中的三個特徵值為自動化篩選要件:(1)高程特徵,利用道路高程呈現連續平緩且與其它地物有明顯高度上之差別來篩選,其中以高程極值±15cm做為篩選門檻值;(2)強度特徵,藉由道路與標線之反射強度成對比來篩選道路點雲,其中強度閥值分別為:車載30~60、空載4~15及地載58~78。此外掃瞄同一物表時因掃瞄角度與距離上的不同,所呈現的強度值也會有所差異,故必須做強度正規化處理;(3)回波特徵,以道路地表皆為單一回波的特性來篩選。最後將所得的結果以點雲密度方式轉換匯出xyz檔,再藉 ArcGis轉成圖檔以 Canny演算法搭配閥值做邊緣萃取。

    研究結果顯示,車載與地面光達因點雲密度較大,故採用0.1與0.5m的網格做分析,0.1m所能呈現的物表較明顯且提供較完整的道路屬性,在市區的5~6線道道路經單次測繪可得3~4線道;而空載光達點雲密度較小,以0.5與1m的網格做探討,1m網格較清晰但道路輪廓較簡略,主要能快速掃瞄大範圍山區並提供道路邊界。

    山區道路因地形起伏大、範圍廣闊且道路組成較單純,故可採用解析力較差之空載光達,但其效率較高;然而在市區道路中新開闢道路或道路屬性測繪需要較高之分辨率與精確度,則以車載光達或地面光達較為適合。

    由於光達資料昂貴,若以街道圖繪製為目標則不符經濟效益,應以其它地形或地貌監測為目的,將所得之測繪成果作為二次利用。此外本研究提出之適用時機和技術門檻,可作為類似使用之先行參考與依據。

    The purpose of this study is to perform an automatic filtering schema to obtain the special features regarding road boundary by using three different kinds of LiDAR systems, ALS、TLS and MLS. The major characters utilized in LiDAR data are the three dimensional coordinate, laser intensity and character features of the return signals. The resulting LiDAR point cloud data is used as fundamental figure for the feature extraction. The combining criteria mainly to choice these three features from point cloud automatically is the technique of filtering: (1) elevation feature, the use of the road elevation showing a continuous flat surface and obviously different from the other objects in elevation, which extremes are within ± 15cm and used as the filtering threshold; (2) intensity feature, by mean of intensity contrast between which reflected from the road and from the marker to extract out the point cloud that corresponding to the road, where the intensity threshold are listed as following: MLS 30 ~ 60, ALS 4 to 15 and TLS 58 to 78 . The reflected laser intensity is influenced by the different scanning angles and distances, a normalization process is required to adjust such phenomena; (3) echo feature, the road surface are filtering by the characteristic of single echo. Finally, the chosen result been converted into point cloud density and export the xyz file, then to utilize the ArcGIS in converting image then the edge is extracted by the canny algorithms.

    As the results show, the point cloud density of ALS and TLS to larger to show the object. Therefore, the data grid is degraded for analysis purpose to the interval of 0.1 and 0.5m, respectively. The 0.1 m grid could presented object more clearly and provide much more complete road attributes. It could provide 2/3 of the lanes information for urban road by single campaign. Airborne Lidar point cloud density is sparse, so the chosen data grid is 0.5 and 1m. Testing results show 1m grid provide much more clear outline but the edge of road is blurred, it is suitable in quickly scan a wider range of mountain area.

    The road in the mountain is hypsography and simple in shape, so it is easier to extract the road boundary than inside the urban area. This character is suitable to use ALS with less resolution but to achieve better efficiency. Therefore in the new road detection within the urban or while the attribute of road need higher demand for resolution and accuracy of mapping, then it is better to use MLS or TLS.

    As the data of LiDAR is expensive, constructing street map based on LiDAR data is not economical. It should be applied to monitor topographic or landscape for reuse. In addition, the applications of the timing and technological thresholds are suggested in this study, which can be employed or referenced for similar researches primarily.

    摘要 ..................................................... I Abstract ............................................... III 誌謝 ..................................................... V 目錄 .................................................... VI 圖目錄 ................................................. VIX 表目錄 ................................................ VIII 第一章 緒論................................................ 1 1.1 前言 ................................................ 1 1.2 研究動機與目的 ....................................... 2 1.3 研究流程與架構 ....................................... 6 第二章 文獻回顧............................................ 8 2.1 光達系統(LiDAR)介紹 .................................. 8 2.1.1 光達基本原理 ..................................... 9 2.1.2 光達系統介紹 .................................... 10 2.2 光達資料萃取 ........................................ 16 2.2.1 高程特徵介紹 .................................... 18 2.2.2 回波特徵介紹 .................................... 19 2.2.3 強度特徵介紹 .................................... 20 2.3 道路強度分類 ........................................ 23 2.3.1 強度正規化 ...................................... 24 2.4 市街圖介紹 .......................................... 25 第三章 研究方法與資料介紹 .................................. 28 3.1 研究範圍資料與軟體介紹 ............................... 28 3.1.1 光達系統參數 .................................... 30 3.2 研究方法流程介紹...................................... 32 3.3 高程篩選 ............................................ 33 3.4 強度值統計 .......................................... 34 3.4.1 道路強度值統計 .................................. 36 3.4.2 道路強度值正規化 ................................. 40 3.5 反射回波篩選 ........................................ 42 3.6 道路點雲密度轉換..................................... 43 3.7 道路邊緣萃取 ........................................ 44 第四章 研究成果........................................... 46 4.1 高程閥值篩選 ........................................ 46 4.2 點雲強度值篩選與分析.................................. 49 4.3 回波分類篩選 ........................................ 52 4.4 點雲密度轉換成果..................................... 54 4.5 道路邊緣萃取成果..................................... 58 4.6 效益分析與評估 ...................................... 61 第五章 結論與建議 ......................................... 67 5.1 結論 ............................................... 67 5.2 建議 ............................................... 68 參考文獻 ................................................. 70

    中文部份
    1. 交通部,“公路路 線設計規範”,幼獅出版社,2001。
    2. 交通部,“道路交通安全規則”,交通部交路字第1000002592號令,內政部台內警字第1000870711號令,2011。
    3. 江凱偉、饒見有、曾義星,“凡走過必留下空間資訊的測量車--移動式測圖系”,土木水利,第36卷,第5期,p.64-78,2009。
    4. 內政部營建署,“市區道路工程規劃及設計規範之研究”,2001。
    5. 內政部,“市區道路及附屬工程設計規範”,台內營字第0980803106號令,行政院公報,第15卷,第80期,內政篇,2009。
    6. 李德仁,“移動測量技術及其應用”,地理空間信息,第4 卷,第4 期,p.1-5,2006。
    7. 李宏君,“從空載光達點雲之反射強度萃取道路交通標線交點”,國立成功大學測量及空間資訊學系碩士論文,2008。
    8. 劉榮寬、徐偉城,“空載光達於地理空間情報之應用”,國防雜誌,第23卷,第6期,p.49-60,2008。
    9. 賴志凱,“地面雷射掃瞄儀的精度 分析與檢定”,國立成功大學測量與空間資訊所碩士論文, 2004。
    10. 羅詔元,“整合光達資料與道路輪廓圖重建三維道路模型”,國立中央大學土木工程研究所碩士論文,2006。
    11. 賀中儒、徐聖謨、姜道章、吳信政,“地圖學通論”,國立編譯館,p.3-6,2003。
    12. 何心瑜、史天元、徐偉城、陳大科,“空載光達點雲密度探討”,內政部辦理 LiDAR測區之高精度 及高解析度數 值地形測繪、資料庫建置與應用推廣工作案,p.151-158,2005。
    13. 群立科技公司,第28屆測量及空間資訊研討會大地影像20cm解析度航照範例,2009。
    14. 張小紅,“機載激光掃瞄測高數據濾波及地物提取”,武漢大學博士論文,2002。
    15. 中翰儀器網,http://www.zhinc.com.cn/cp/optech_lynx.htm,(2011年3 月查)。
    16. 陳端墀,“遙測學—光達”,中華技術學院土木工程系自製教案。取自http://ce.cust.edu.tw/myWeb/documents/陳端墀教學檔案/遙測學.ppt,2011 年3 月24 日。
    17. 宋伯欽,“都市意象The Image of the City”,台隆書店,1975。
    18. 史天元、彭淼祥、吳水吉、吳麗娟,“農委會空載光達台灣地區測試”,航測及遙測學刊,第10卷,第1期,p.103-128,2005。
    19. 史天元、何心瑜,“數值高程模型及數值覆蓋模型產製品質研究”,內政部辦理LiDAR 測區之高精度及高解析度數值地形測繪、資料庫建置與應用推廣工作案,p.129-142,2005。
    20. 沈嚴,“車載激光測繪技術”,紅外與激光工程,p.437-441,2009。
    21. 王蜀嘉,“空間資訊時代基本地形圖應有的變革”,地籍測量,第27卷,第3期,p.91-104,2008。
    22. 王詠倩、楊坤霖、鄒國信、吳玉珍、何毓芬,“交通路網數值地圖之維護更新(一)”,交通部運輸研究所和銳俤科技股份有限公司合作辦理,2004。
    23. 吳志遠,“利用LiDAR資料探討物件式分類法對第一生產力資源參數萃取之研究”,國立成功大學測量及空間資訊學系碩士論文,2008。
    24. 蕭淳伊、曾義星,“應用遙測影像與空載光達資料推估森林分佈面積及樹冠體積”,航測及遙測學刊,第14卷,第1期,p.51-64,2009。

    英文部份
    1. AASHTO, “A Policy on Geometric Design of Highways and Streets”,2004.
    2. Ackermann, F., “Airborne laser scanning—present status and future expectations” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, pp.64-67, 1999.
    3. Alharthy, A., and Bethel, J., “Heuristic filtering and 3d feature extraction from lidar data. ” In ISPRS Commission III, Symposium 2002 September 9-13, Graz, Austria Pages A-29 ff (6 pages) , 2002.
    4. Bartels, M., and Wei, H., “Case study: Object and Ground Point Separation on a River Bank Using Airborne Based LIDAR Data.” Annual Conference of the Remote Sensing and Photogrammetry Society, CD Proceedings, Newcastle upon Tyne, UK, pp.11-14, 2007.
    5. Canny, J., “A computational approach to edge detection” (IEEE Computer Society Washington, DC, USA), pp.679-698, 1986.
    6. Elberink, S.O., and Marts, H.G., “The use of anisotropic height texture measurements for the segmentation of airborne laserscanner data. ” In:International:Archives of Photogrammetry and Remote Sensing, V01.XXXIII, Part B3, Amsterdam. pp. 678-684, 2000.
    7. El-Sheimy, N., “The Development of VISAT – A Mobile Survey System for GIS Applications”, (Ph.D. thesis), UCGE Report No. 20101, Department of Geomatics Engineering, the University of Calgary, 1996.
    8. Fischler, M.A., Tenenbaum, J.M., and Wolf, H.C., “Detection of roads and linear structures in low-resolution aerial imagery using a muitisource knowledge integration technique”. Comput. Graphics Image Process., pp.201-223, 1981.
    9. Gruen, A. , and Li, H. “Road extraction from aerial and
    satelliteimages by dynamic hotogrammetry, Vol. 50, No. 4, pp.11-20, 1995.
    10. Gonzalez R. C., and Woods R. E., “Digital Image Processing”, Prentice. Hall, Second edition (2002) or Third edition (2008).
    11. IHRC, “Airborne Laser Technology”, Laboratory for Coastal Research ,URL:http://www.ihrc.fiu.edu/lcr/research/airborne_laser_mapping/index.htm ,03/15/2011.
    12. Jelalian, A.V., “Laser Radar Systems.ArtechHouse”, Boston London,1992.
    13. Lapucha, D., “Precise GPS/ INS Positioning for Highway Inventory System. ”, M.Sc Thesis, Department of Geomatics Engineering, The University of Calgary, Canada, 1990.
    14. Luzum, B.J., Starek, M.,and Slatton, K.C., “Normalizing ALSM intensities. ” , Geosensing Engineering and Mapping (GEM) Center Report No. Rep 2004-07-001, Civil and Coastal Engineering Department, University of Florida. 8 pp. URL:
    http://www.aspl.ece.ufl.edu/reports/GEM_Rep_2004_07_001.pdf
    (Accessed May 23,2007) , 2004.
    15. Samadzadegan, F., Bigdeli, B., and Hahn, M., “Automatic road extraction from lidar data based on classifier fusion in urban area. ”, In International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (Part 3), pp.81-87, 2009.
    16. Silva, J. F. C., Camargo, P. O., Oliveira, R. A., Gallis, R.B. A., Guardia, M. C., Reiss, M. L. L., and Silva, R. A. C., “A street map built by a mobile mapping system.Ibid. ”, 33(B2), pp.510-517, 2000.
    17. Song, J. H., Han, S. H., Yu, K., and Kim, Y.I., “Assessing the possibility of land-cover classification using lidar intensity data.
    International Archives of Photogrammetry”, Remote Sensing and Spatial Information Sciences 34 (Part 3B), pp.259-262, 2002.
    18. Manandhar, D., and Shibasaki, R., “Auto-extraction of urban features from vehicle-borne laser data”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34 , 2002.
    19. Mao, J. H., Zeng, Q. H., Lai, J. Z., and Liu, X. F., “Filtering lidar points by fusion of intensity measures and aerial images. ”, The international archive of the photogrammetry, remote sensing and spatial information science, Vol.XXXVII, part B3b, Beijing, China, 2008.
    20. Ono, N., Tonoko, N., and Sato, K., “A Case Study on the Landslide by the 3D Laser Mirror Scanner.”, International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5, Amsterdam, pp.593-598, 2000.
    21. Vain, A., Kaasalaine, S., Pyysalo, U., Krooks, A., and Litkey, P., “Use of naturally available reference targets to calibrate airborne laser scanning intensity data.”, Sensors, Vol. 9, pp.2780-2796, ISSN 1424-8220, 2009.
    22. Watt, P., and Wilson, J., “Using airborne light detection and ranging (LiDAR) to identify and monitor the performance of plantation species mixture. ”, Proceedings of ForestSat 2005, Borås, Sweden, pp. 51-55, 2005.
    23. Wehr, A., and Lohr, U., “Airborne Laser Scanning – an Introduction and Overview.”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, pp.68-82, 1999.

    下載圖示 校內:2014-08-08公開
    校外:2016-08-08公開
    QR CODE