簡易檢索 / 詳目顯示

研究生: 黃郁傑
Huang, Yu-Chieh
論文名稱: 乾燥黑液與廢聚乙烯催化共裂解之研究
A Study on the Catalytic Co-Pyrolysis of Dried Black Liquor and Waste Polyethylene
指導教授: 伍芳嫺
Wu, Fang-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 178
中文關鍵詞: 黑液廢聚乙烯共熱裂解碳酸鈣Starink田口實驗法裂解油產率可用能效率
外文關鍵詞: Black liquor, Waste polyethylene, Co-pyrolysis, CaCO₃, Starink, Taguchi method, Pyrolysis oil yield, Exergy efficiency
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球對生質能與廢棄物再利用之重視日益提升,如何有效整合高含氧的生質物與高熱值的廢塑膠回收料,進而轉化為具商業潛力的再生燃料,已成為當前能源技術研究的重要課題。本研究以造紙製程中產生之黑液經過乾燥程序後變為乾燥黑液與廢聚乙烯為混摻原料,探討其於共熱裂解反應下的動力學特性、油品產率與組成變化,並評估碳酸鈣作為催化熱裂解之催化劑的潛在助益。本研究對於BLS與PE進行熱值、近似與元素分析,再使用熱重分析儀探討BLS與PE在N2環境下的熱裂解與共熱裂解特性,同時分析協同效應與活化能的變化,瞭解原料特性。協同效應顯示混摻過後在500°C 前具有明顯促進BLS失重的效應,提升裂解效率。此外,使用Starink方法計算活化能,發現摻入PE助於降低混摻比的平均活化能,使裂解反應更容易啟動。後續於管狀高溫爐進行催化共熱裂解實驗,並與田口實驗法做搭配。實驗後的油品以氣相層析質譜儀進行分析,以便於探討整體化合物成份趨勢變化。本研究找出三種最佳化標的,分別最大裂解油產油率實驗參數為:溫度550°C、混摻比BLS∶PE為40∶60、碳酸鈣添加5 %、N2流率為600 mL/min,最大裂解油產油率為41.25 %;最佳類HVO產油率實驗參數為:溫度550°C、混摻比BLS∶PE為55∶45、碳酸鈣添加5 %、N2流率為600 mL/min,最佳類HVO產油率為23.30 %,最大可用能實驗參數為:溫度550°C、混摻比BLS∶PE為85∶15、碳酸鈣添加10 %、N2流率為800 mL/min,最大可用能為78.95 %。

    With the growing global emphasis on biomass energy and waste valorization, the effective integration of oxygen-rich biomass with high-calorific-value waste plastics for the production of value-added renewable fuels has become a critical research focus in energy technology. This study systematically investigates the co-pyrolysis behavior of dried black liquor solids (BLS), a papermaking by-product, and waste polyethylene (PE), with a focus on their reaction kinetics, pyrolysis oil yield, and product composition. The potential catalytic effect of calcium carbonate (CaCO₃) as a co-pyrolysis catalyst was also evaluated. The properties of BLS and PE were characterized through proximate analysis, elemental analysis, and calorific value determination. Thermogravimetric analysis was conducted under nitrogen atmosphere to study their individual and co-pyrolysis behaviors while evaluating synergistic effects and changes in activation energy to understand feedstock characteristics. The synergistic interactions clearly enhanced BLS overall weight loss upon blending before 500°C, thereby improving pyrolysis efficiency. Activation energies calculated via the Starink method showed that adding PE lowers the average of activation energy,facilitating the initiation of the pyrolysis reaction.Subsequent catalytic co-pyrolysis experiments were carried out in a tubular furnace, applying the Taguchi method for experimental design. The pyrolysis oils were analyzed by gas chromatography–mass spectrometry (GC/MS) to assess the compound distribution trends. Three optimal operating conditions were identified. The highest overall oil yield(41.25%) was achieved at 550°C with a BLS/PE blend ratio of 40:60, 5 wt% CaCO₃ catalyst loading, and a nitrogen flow rate of 600 mL/min. The maximum hydrotreated vegetable oil-like fraction yield(23.30%) occurred at 550 °C with a BLS/PE ratio of 55:45 under the same catalyst loading and nitrogen flow conditions. The highest exergy efficiency(78.95%) was obtained at 550°C with a BLS/PE ratio of 85:15, 10 wt% CaCO₃ addition, and a nitrogen flow rate of 800 mL/min.

    摘要 I ABSTRACT II 致謝 XLIV 目錄 XLV 表目錄 XLVIII 圖目錄 L 符號對照表(SYMBOLS AND ABBREVIATIONS) LII 第一章 前言 1 1.1全球與台灣能源概況 1 1.2 生質能概況 3 1.3造紙廠黑液(Black Liquor) 5 1.4 聚乙烯(Polyethylene) 7 1.5生質柴油與加氫植物油(Hydrotreated Vegetable Oil, HVO)燃料之概述 8 第二章 文獻回顧與動機 10 2.1 熱裂解(Pyrolysis) 10 2.2 黑液的組成與熱裂解特性 12 2.3 聚乙烯的組成與熱裂解特性 14 2.4 共裂解特性 16 2.5 生質油收集與特性(成分分類、來源) 19 2.6 研究動機與目的 21 第三章 實驗設備與分析方法 24 3.1 實驗原料 24 3.2 實驗設備介紹 29 3.2.1熱值分析介紹(Heating Value Analysis) 29 3.2.2元素分析介紹(Elemental analysis, EA) 30 3.2.3近似分析介紹(Proximate Analysis) 31 3.2.4熱重分析儀(TGA) 33 3.2.5氣相層析質譜儀介紹(GC/MS) 34 3.2.6 熱重分析串接氣相層析質譜儀(TGA-GC/MS) 35 3.2.7 pH值分析儀 36 3.3 化學反應動力學(Starink) 37 3.4 協同效應分析(Synergistic effect analysis) 39 3.5 可用能(Exergy) 40 3.6 田口式實驗設計法(Taguchi method) 42 3.7 管狀高溫爐系統建置與操作流程 46 第四章 原料性質分析與熱重分析 48 4.1原料性質分析 48 4.2 熱重分析(TGA)結果 50 4.2.1 熱重分析 50 4.3 協同效應分析(Synergistic effect analysis) 56 4.4 活化能分析(Activation energy analysis) 59 第五章 以田口實驗法進行熱裂解實驗 69 5.1 田口實驗法參數設定與範圍 69 5.2 最大裂解油產油率之操作參數 75 5.2.1 最大裂解油產油率之CaCO3催化效果 80 5.2.2 裂解油之GC/MS分析結果 86 5.3 最佳類加氫植物油(HVO)產油率 94 5.4 最大可用能(Exergy) 104 第六章 結論 110 參考文獻 113

    [1] https://www.lemonde.fr/en/environment/article/2024/10/16/fossil-fuels-is-a-decrease-in-demand-really-in-sight_6729515_114.html
    [2] Statistical Review of World Energy, 73st edition, 2024, [Online] Available: https://www.energyinst.org/statistical-review
    [3] https://www.reuters.com/business/energy/renewables-outweigh-fossil-fuels-dutch-power-mix-statistics-agency-says-2024-09-27/html
    [4] https://www.esist.org.tw/
    [5] 台灣電力公司. (2023). 2023年電力供需報告. 台灣電力公司. https://www.taipower.com.tw
    [6] 經濟部能源局. (2023). 2023年能源統計手冊. 經濟部能源局. https://www.esist.org.tw/
    [7]行政院能源及減碳辦公室. (2016). 非核家園政策報告. 行政院. https://www.ey.gov.tw
    [8] OECD. (2010). Bioheat, Biopower and Biogas Developments in IEA Countries: 2007 Update. https://www.oecd.org
    [9] International Energy Agency (IEA). (2021). Renewables 2021. https://www.iea.org/reports/renewables-2021
    [10] IEA Bioenergy. (2020). Biofuels for the marine sector: New opportunities and challenges. https://www.ieabioenergy.com
    [11] International Energy Agency (IEA). (2023). Renewables 2023: Analysis and forecast to 2028. Retrieved from https://www.iea.org/reports/renewables-2023
    [12] Zhu, J. Y., & Pan, X. J. (2010). Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology, 101(13), 4992–5002.
    [13] Li, J., Henriksson, G., & Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98(16), 3061–3068.
    [14] González, A., et al. (2011). Recovery of lignin from Kraft black liquor: Study of the precipitation, filtration and washing stages. BioResources, 6(4), 5307–5321.
    [15] Rissanen, P., et al. (2017). Toxicological risk assessment of black liquor land application: An environmental and human health perspective. Journal of Environmental Management, 203, 882–889.
    [16] Kringstad, K. P., & Lindström, K. (1984). Spent liquors from pulp bleaching. Environmental Science & Technology, 18(8), 236A–248A.
    [17] IEA Bioenergy. (2013). Black Liquor Gasification: Summary and Conclusions. Retrieved from https://www.ieabioenergy.com/wp-content/uploads/2013/10/Black-Liquor-Gasification-summary-and-conclusions1.pdf
    [18] Jin, Y., et al. (2020). Comparative study on energy efficiency of conventional and black liquor gasification systems. Energy Conversion and Management, 221, 113195.
    [19] American Council for an Energy-Efficient Economy (ACEEE). (1995). Energy recovery from black liquor combustion. Retrieved from https://www.aceee.org/files/proceedings/1995/data/papers/SS95_Panel1_Paper04.pdf
    [20] Huang, C., Chang, S., & Lee, C. (2018). Characterization and energy utilization of black liquor from kraft pulping process. Taiwan Journal of Forest Science, 33(1), 65–74.
    [21] Feng, H., Lin, T., & Chen, C. (2011). Recovery and utilization of black liquor from pulp and paper industry. Journal of Taiwan Energy, 8(2), 45–53.
    [22] Taipei Exchange. (2024). Overview of Taiwan’s paper and paperboard industry 2023. Taipei Exchange Industry Statistics. https://ic.tpex.org.tw
    [23] Public Television Service. (2023, September 6). Black liquor energy recovery at Hua Paper Hualien Mill. Public Television Service News Network. https://news.pts.org.tw/article/666377
    [24] Zhang, Y., et al. (2021). Enhanced methane production from lignin-rich black liquor by two-phase anaerobic digestion. Renewable Energy, 164, 1225–1233.
    [25] Khan, A., et al. (2019). Biodegradation of lignin derivatives by novel bacterial strains: Application to black liquor detoxification. Journal of Environmental Chemical Engineering, 7(3), 103137.
    [26] Gosslink, R. J. A., De Jong, E., Guran, B., & Abacherli, A. (2004). Co-ordination network for lignin-standardisation, production and applications adapted to market requirements. Ind. Crops Prod, 20, 121-129.
    [27] Monte Lara, M. C., Blanco Suárez, Á., & Negro Álvarez, C. M. (2009). Waste management from pulp and paper production in the European Union.
    [28] Beecher, James & Hunt, Christopher & Zhu, J.Y.. (2009). The Nanoscience and Technology of Renewable Biomaterials. 10.1002/9781444307474.ch3.
    [29] Plastics Europe. (2023). Plastics – the Facts 2023.
    [30] Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
    [31] OECD. (2022). Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options.
    [32] 行政院環保署((2022)). 廢塑膠資源回收現況與推動策略.
    [33] Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126.
    [34] Lopez, G., Artetxe, M., Amutio, M., et al. (2017). Recent advances in the gasification of waste plastics. Renewable and Sustainable Energy Reviews, 82, 576–596.
    [35] Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14–34. https://doi.org/10.1016/j.enconman.2008.09.001
    [36] Fitzgerald, W., Leung, A., & Leckner, B. (2020). Performance and emissions of hydrotreated vegetable oil (HVO) in diesel engines: A review. Renewable and Sustainable Energy Reviews, 134, 110145. https://doi.org/10.1016/j.rser.2020.110145
    [37] Balfour Beatty.(2024, June). Position paper: Hydrotreated Vegetable Oil (HVO) and Gas to Liquid (GTL). https://www.balfourbeatty.com/media/0ouj2nyi/hvo-positioning-paper-2024.pdf
    [38] Argus Media. (2024). HVO Fuel Price & Renewable Diesel | Market Insights. https://www.argusmedia.com/en/news-and-insights/topical-market-themes/hvo
    [39]Kumar, A. & Hanna, M. A. (2009). Thermochemical biomass gasification: A review of the current status of the technology. Energies, 2(3), 556–581.
    [40] C. A. Koufopanos, N.(1991),’’Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects’’
    [41] Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.).
    [42] Mastellone, M. L., et al. (2017). Pyrolysis of plastic waste for recovery of fuel and materials: State-of-the-art and prospects. Waste Management, 60, 442–460.
    [43] Brewer, C. E., et al. (2009). Characterization of bio-oil and syngas from fast pyrolysis of switchgrass. Energy & Fuels, 23(3), 1483–1489.
    [44] Neupane, S., et al. (2015). Upgrading of biomass-derived bio-oil: A review. Fuel, 157, 245–267.
    [45] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy,3894.
    [46] Jahirul, M.& Ashwath, N. (2012). Biofuels production through biomass pyrolysis—A technological review. Energies, 5(12), 4952–5001.
    [47] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy,3894.
    [48] Mohan, D. & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review.
    [49] Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value-added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233–248. https://doi.org/10.1016/j.rser.2009.07.005
    [50] Li, S., & Chen, J. (2020). Catalytic pyrolysis of polyethylene waste: A promising technology for the circular economy. Renewable and Sustainable Energy Reviews, 134, 110148. https://doi.org/10.1016/j.rser.2020.110148
    [51] Yang, X., & Wang, Z. (2021). Technical and economic barriers of polyethylene pyrolysis: Future research directions for improved efficiency and cost-effectiveness. Waste and Biomass Valorization, 12(4), 1479-1491. https://doi.org/10.1007/s12649-020-00873-1
    [52] Chen, D.& Zhang, Q. (2014). Pyrolysis of nitrogen-containing organic compounds and NOx formation mechanisms. Progress in Energy and Combustion Science, 40, 1–32.
    [53] Mani, T.& Mahinpey, N. (2011). Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and nitrogen flow rate on the pyrolysis behavior. Bioresource Technology, 102(12), 6128–6135.
    [54] Gai, C.& Dong, Y. (2013). Thermogravimetric and kinetic analysis of thermal decomposition characteristics of sewage sludge and its constituents under nitrogen atmosphere. Bioresource Technology, 148, 1–7.
    [55] DeGroot, W. F. & Shafizadeh, F. (1984). The influence of inorganic additives on the carbonization of cellulose. Journal of Applied Polymer Science, 29(4), 1267–1283.
    [56] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.
    [57] Mani, T.& Mahinpey, N. (2011). Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and nitrogen flow rate on the pyrolysis behavior. Bioresource Technology, 102(12), 6128–6135.
    [58] Glumac, N. G. & Elliott, G. S. (2013). Nitrogen dissociation and ionization behind strong shocks in nitrogen. Shock Waves, 23(2), 127–139.
    [59] Bajpai, P. (2021). Management of Pulp and Paper Mill Waste. Springer.
    [60] Bajpai, P. (2015). Chemical Recovery in the Alkaline Pulping Processes. Springer.
    [61] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.
    [62] Chiaramonti, D., et al. (2007). Technical and economic analysis of bio-oil production by fast pyrolysis of lignocellulosic residues. Biomass and Bioenergy, 30(7), 568–582..
    [63] Gea, G., Murillo, M. B., Sanchez, J. L., & Arauzo, J. (2003). Thermal degradation of alkaline black liquor from wheat straw. 2. Fixed-bed reactor studies. Industrial & engineering chemistry research, 42(23), 5782-5790.
    [64] Zhang, H., Xiao, R., et al. (2022). Co-pyrolysis of kraft lignin and polyethylene: Synergistic effects on syngas and oil production. Fuel Processing Technology, 218, 106902.
    [65] Wu, C., et al. (2013). Co-pyrolysis of biomass and plastic waste: Synergistic effects and reaction pathways. Fuel Processing Technology, 110, 144–152.
    [66] Weiland, F., Jacobsson, D., Wahlqvist, D., Ek, M., & Wiinikka, H. (2024). Inorganic chemistry during pyrolysis, gasification, and oxyfuel combustion of kraft pulping black liquor. Energy & Fuels, 38(6), 5279-5287.
    [67] Chutia, S., et al. (2014). Production of bio-oil from black liquor via pyrolysis. Renewable Energy, 71, 613–620.
    [68] Zhang, H., Xiao, R., et al. (2022). Co-pyrolysis of kraft lignin and polyethylene: Synergistic effects on syngas and oil production. Fuel Processing Technology, 218, 106902.
    [69] Kurtz, S. M. (2009). UHMWPE biomaterials handbook: Ultra high molecular weight polyethylene in total joint replacement and medical devices (2nd ed.). Elsevier.
    [70] Gao, Y., & Song, Z. (2019). Thermochemical conversion of polyethylene waste: Progress and perspectives. Journal of Hazardous Materials, 374, 310–322. https://doi.org/10.1016/j.jhazmat.2019.04.026
    [71] Kuczynska, A., Sokolowska, M., & Cieślak, J. (2015). Pyrolysis of polyethylene (PE) waste. Waste Management, 46, 1–11. https://doi.org/10.1016/j.wasman.2015.08.012
    [72] Li, J., & Zhang, J. (2020). Thermochemical recycling of polyethylene waste and production of value-added products. Waste Management, 107, 1–11. https://doi.org/10.1016/j.wasman.2020.03.027
    [73] Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004
    [74] Fakhrhoseini, S. M., & Dastanian, M. (2013). Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. Journal of Chemistry, 2013, Article ID 842049. https://doi.org/10.1155/2013/842049
    [75] Maafa, I. M. (2020). Thermal and catalytic pyrolysis of plastic waste for liquid fuel. Renewable and Sustainable Energy Reviews, 128, 109906. https://doi.org/10.1016/j.rser.2020.109906
    [76] Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., & Yoshikawa, K. (2014). Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors. Energy Procedia, 47, 180–188. https://doi.org/10.1016/j.egypro.2014.01.210
    [77] Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., & Olazar, M. (2017). Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 82, 576–596. https://doi.org/10.1016/j.rser.2017.09.032
    [78] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022
    [79] Chen, D., Yin, L., Wang, H., & He, P. (2014). Pyrolysis technologies for municipal solid waste: A review. Waste Management, 34(12), 2466–2486. https://doi.org/10.1016/j.wasman.2014.08.004
    [80] Sharuddin, S. D. A., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. https://doi.org/10.1016/j.enconman.2016.02.037
    [81] Lieberman, M. A. & Lichtenberg, A. J. (2005). Principles of plasma discharges and materials processing (2nd ed.). John Wiley & Sons.
    [82] Ershov, S. M.& Kuznetsov, V. L. (2015). Kinetics and mechanism of nitrogen molecule dissociation on transition metal surfaces. Journal of Physical Chemistry C, 119(19), 10715–10721.
    [83] Lee, W. E.& Rainforth, W. M. (1994). Ceramic microstructures: Property control by processing. Chapman and Hall.
    [84] Glassman, I.& Yetter, R. A. (2008). Combustion (4th ed.). Academic Press.
    [85] Zeldovich, Y. B. (1946). The oxidation of nitrogen in combustion and explosions. Acta Physicochimica URSS, 21, 577-628.
    [86] Bowman, C. T. (1992). Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation. Proceedings of the Combustion Institute, 24(1), 859-878.
    [87] Turns, S. R. (2000). An introduction to combustion: Concepts and applications (2nd ed.). McGraw-Hill.
    [88] Borman, G. L.& Ragland, K. W. (1998). Combustion engineering (2nd ed.). McGraw-Hill.
    [89] Niu, M.& Hu, J. (2022). Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios. Energy, 240, 122808
    [90] Klein, A. M.& Puskar, M. (2016). The role of nitrogen in the processing of metals. Journal of Materials Processing Technology, 228, 1-10.
    [91] Sakaguchi, K.& Hoshi, Y. (2002). Application of silicon nitride ceramics for engine components. Journal of the Ceramic Society of Japan, 110(12), 1060-1064.
    [92] Gorokhovsky, A. E.& Chuev, V. P. (2003). The impact of nitride materials on the performance of electronic devices. Materials Science and Engineering: B, 103(2), 142-147.
    [93] Schmal, M.& Mello, F. C. (2017). The role of nitrogen in the chemical processes in pyrolysis: A review. Fuel Processing Technology, 159, 100-110.
    [94] Dong, C.& Liu, S. (2020). Synergistic effects in co-pyrolysis of biomass and waste plastics: A review on product characteristics and synergistic mechanisms. Renewable and Sustainable Energy Reviews, 124, 109801.
    [95] Zhang, X. & Zhao, Y. (2016). Co-pyrolysis of biomass and plastics: Influence of plastic type and proportion on the yield and properties of liquid oil. Fuel, 173, 72-77.
    [96] Lopez, G., et al. (2017). Thermochemical routes for the valorization of waste polyethylene: A review. Renewable and Sustainable Energy Reviews, 73, 346–368.
    [97] Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value-added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233–248.
    [98] Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171.
    [99] Li, S., et al. (2015). Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. Journal of Analytical and Applied Pyrolysis, 113, 396–403.
    [100] Lopez-Urionabarrenechea, A., et al. (2016). Co-pyrolysis of biomass and plastics into carbon materials. PNAS, 113(30), E4343–E4350.
    [101] Wang, Z., Zhang, J., Zhang, L., & Liu, Y. (2021). Co-pyrolysis of biomass and plastic wastes: Reaction mechanism and synergistic effect. Renewable and Sustainable Energy Reviews, 145, 111076. https://doi.org/10.1016/j.rser.2021.111076
    [102] Serrano, D. P., Aguado, J., & Escola, J. M. (2011). Developments in the production of transportation fuels from biomass by the pyrolysis and catalytic upgrading of bio-oils. Catalysis Reviews, 53(4), 411–451. https://doi.org/10.1080/01614940.2011.596429
    [103] Serrano, D. P., Aguado, J., Garcia, A., & Peral, A. (2011). Optimizing co-pyrolysis of biomass and plastics for liquid fuels: Study on product quality and composition. Fuel Processing Technology, 92(3), 563–571. https://doi.org/10.1016/j.fuproc.2010.11.003
    [104] Ahmed, I., Tsolakis, A., Hellgardt, K., & Dincer, I. (2018). Co-pyrolysis of municipal solid waste and plastics: Influence of chlorinated polymers on product distribution and environmental impact. Journal of Analytical and Applied Pyrolysis, 134, 218–227. https://doi.org/10.1016/j.jaap.2018.07.019
    [105] Wang, X., Ma, Y., Li, Y., & Chen, H. (2021). Investigation of synergistic effects during co-pyrolysis of biomass and plastics using TGA and kinetic modeling. Journal of Cleaner Production, 280, 124376. https://doi.org/10.1016/j.jclepro.2020.124376
    [106] Zhou, Y., Zhang, H., Wu, C., & Chen, Y. (2020). Co-pyrolysis of rice husk and polyethylene: Synergistic effect and product characterization. Bioresource Technology, 310, 123461. https://doi.org/10.1016/j.biortech.2020.123461
    [107] Mohan, D., Pittman Jr., C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397
    [108] Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48(1), 87–92. https://doi.org/10.1016/j.enconman.2006.05.010
    [109] Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
    [110] Oasmaa, A., & Czernik, S. (1999). Fuel oil quality of biomass pyrolysis oils: State of the art for the end users. Energy & Fuels, 13(4), 914–921. https://doi.org/10.1021/ef980272b
    [111] Elliott, D. C. (2007). Historical developments in hydroprocessing bio-oils. Energy & Fuels, 21(3), 1792–1815. https://doi.org/10.1021/ef0603273
    [112] Bajpai, P. (2013). Biotechnology for Pulp and Paper Processing. Springer.
    [113] Chutia, S., & Kataki, R. (2018). Pyrolysis of dried black liquor solids and characterization of the bio-chip and bio-oil. Materials Today: Proceedings, 5(11), 23193–23202.
    [114] Zhang, H., Xiao, R., & Jin, B. (2014). Co-pyrolysis of black liquor lignin and plastics: Synergistic effect and product characterization. Fuel, 128, 361–367.
    [115] Hilbers, T. J., Sprakel, L. M. J., van den Enk, L. B. J., Zaalberg, B., van den Berg, H., & van der Ham, L. G. J. (2015). Green diesel from hydrotreated vegetable oil process design study. Chemical Engineering & Technology, 38(4). https://doi.org/10.1002/ceat.201400648
    [116] Szeto, W., & Leung, D. Y. C. (2022). Is hydrotreated vegetable oil a superior substitute for fossil diesel? A comprehensive review on physicochemical properties, engine performance and emissions. Fuel: X, 125065. https://doi.org/10.1016/j.fuel.2022.125065
    [117] Engman, A., Hartikka, T., Honkanen, M., Kiiski, U., & Mikkonen, S. (2014). Hydrogenated Vegetable Oils (HVO). Neste Oil Technical Booklet.
    [118] Garraín, D., Herrera, I., & Lechón, Y. (2012). Well-to-Tank environmental analysis of a renewable diesel fuel from vegetable oil through co-processing in a hydrotreatment unit. Smart Grid and Renewable Energy, 3, 10–20.
    [119] Hilbers, T. J., Sprakel, L. M. J., van den Enk, L. B. J., Zaalberg, B., van den Berg, H., & van der Ham, L. G. J. (2015). Green diesel from hydrotreated vegetable oil process design study. Chemical Engineering & Technology, 38(4). https://doi.org/10.1002/ceat.201400648
    [120] Zeman, P., Hönig, V., & Kotek, M. (2019). Hydrotreated vegetable oil as a fuel from waste materials. Catalysts, 9(337). https://doi.org/10.3390/catal9040337
    [121] Catalysts’ (2019). Cetane number of hydrotreated vegetable oils ranges from 75 to 95 units, as determined by GC-FID and linear extrapolation methods
    [122] IEA AMF. (n.d.). Hydrotreating of oils and fats is a novel process for producing renewable paraffinic diesel…N paraffins and isoparaffins for diesel, some processes also produce cyclo-paraffins.
    [123] Academia (2011). Key properties and blending strategies of hydrotreated vegetable oil as biofuel for diesel engines: HVO blending increases cetane number, achieves low soot, excellent cold flow properties, and drop-in compatibility up to 50% blends
    [124] Demirbaş, A. (2009). Pyrolysis of biomass to generate bio-fuel for engines: A review. Energy & Fuels, 50(11), 2808–2820. https://doi.org/10.1016/j.enconman.2009.05.009
    [125] Jia, Y., Wang, M., Li, B., Liu, J., Song, X., Wu, M., & Yin, Y. (2024). Co-pyrolysis of waste plastics and black liquor catalyzed by Mo–Ni/HZSM-5 for preparing high-quality bio-oil. Journal of Analytical and Applied Pyrolysis, 106540. https://doi.org/10.1016/j.jaap.2024.106540
    [126] https://www.fao.org/newsroom/detail/global-forest-products-facts-and-figures-2023-shows-fall-in-global-trade-in-wood-and-paper-products/en?utm_source=chatgpt.com
    [127] Kwon, E. E., Lee, T., Ok, Y. S., Tsang, D. C. W., Park, C., & Lee, J. (2018). Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, 726–731. https://doi.org/10.1016/j.energy.2018.04.100
    [128] Pereira, A. H. C., Silva, A. J. O., Machado, B. J. B., Santos, A. M., Romero Luna, C. M., et al. (2022, November). IN-SITU catalytic pyrolysis of sugarcane bagasse using calcium carbonate for biofuel production. 19th Brazilian Congress of Thermal Sciences and Engineering (ENC-2022-0632).
    [129] https://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#EA
    [130] https://che.ncku.edu.tw/p/404-1220-278533.php?Lang=zh-tw
    [131] https://ctrmost-cfc.ncku.edu.tw/p/404-1210-7206.php?Lang=zh-tw
    [132] https://www.kohan.com.tw/product/mettler-toledo-tga-2/
    [133] https://conquerscientific.com/product/agilent-7890a-gc-with-5975-msd-and-7693-als-system/
    [134]Sanchez-Silva, J. M., Ocampo-Pérez, R., Padilla-Ortega, E., Sangaré, D., Escobedo-Bretado, M. A., Domínguez-Arvizu, J. L., Hernández-Majalca, B. C., Salinas-Gutiérrez, J. M., López-Ortiz, A., & Collins-Martínez, V. (2023). Pyrolysis Kinetics of Byrsonima crassifolia Stone as Agro-Industrial Waste through Isoconversional Models. Molecules, 28(2), 544. https://doi.org/10.3390/molecules28020544
    [135] Starink, M. J. (2003). The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1–2), 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
    [136] Y. Zhang, G. Ji, D. Ma, C. Chen, Y. Wang, W. Wang, A. Li, Exergy and energy analysis of pyrolysis of plastic wastes in rotary kiln with heat carrier, Process Safety and Environmental Protection, 142 (2020) 203-211.
    [137] Szargut, J., Morris, D. R., & Steward, F. R. (1988). Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere Publishing.
    [138] G.-L. Chen, G.-B. Chen, Y.-H. Li, W.-T. Wu, A study of thermal pyrolysis for castor meal using the Taguchi method, Energy, 71 (2014) 62-70.
    [139] Majoe, N., Patel, B., Gorimbo, J., & BEas, I. (2024). Catalytic influence of alkali and alkali Earth metals in black liquor on the gasification process: a review. Biomass Conversion and Biorefinery, 1-19.
    [140] Heeres, A., Schenk, N., Muizebelt, I., Blees, R., De Waele, B., Zeeuw, A. J., ... & Heeres, H. J. (2018). Synthesis of bio-aromatics from black liquors using catalytic pyrolysis. ACS sustainable chemistry & engineering, 6(3), 3472-3480.
    [141] Kayacan, I., & Doğan, Ö. M. (2008). Pyrolysis of low and high density polyethylene. Part I: non-isothermal pyrolysis kinetics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(5), 385-391.
    [142] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
    [143] Wang, W., Lemaire, R., Bensakhria, A., & Luart, D. (2022). Analysis of the catalytic effects induced by alkali and alkaline Earth metals (AAEMs) on the pyrolysis of beech wood and corncob. Catalysts, 12(12), 1505.
    [144] Bianchini, A., Pellegrini, M., & Saccani, C. (2011). Material and energy recovery in integrated waste management system–an Italian case study on the quality of MSW data. Waste Management, 31(9-10), 2066-2073.
    [145] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
    [146] Yu, I. K., Chen, H., Abeln, F., Auta, H., Fan, J., Budarin, V. L., ... & Tsang, D. C. (2021). Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 51(14), 1479-1532.
    [147] Wang, X., Ma, Y., Li, Y., & Chen, H. (2021). Investigation of synergistic effects during co-pyrolysis of biomass and plastics using TGA and kinetic modeling. Journal of Cleaner Production, 280, 124376. https://doi.org/10.1016/j.jclepro.2020.124376
    [148]Liu, G., Huang, Y., Wang, J., & Liu, R. (2020). A review on the thermal-hydraulic performance and optimization of printed circuit hEat exchangers for supercritical CO2 in advanced nuclEar power systems. Renewable and Sustainable Energy Reviews, 133, 110290.
    [149] Starink, M. J. (2003). The determination of activation energy from linEar hEating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta, 404(1-2), 163-176.
    [150] Kumar, M., Giri, B. S., Kim, K. H., Singh, R. P., Rene, E. R., López, M. E., ... & Singh, R. S. (2019). Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresource technology, 285, 121317.
    [151] Bianchini, A., Pellegrini, M., & Saccani, C. (2011). Material and energy recovery in integrated waste management system–an Italian case study on the quality of MSW data. Waste Management, 31(9-10), 2066-2073.
    [152] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
    [153] Yu, I. K., Chen, H., Abeln, F., Auta, H., Fan, J., Budarin, V. L., ... & Tsang, D. C. (2021). Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology, 51(14), 1479-1532.
    [154] Wang, X., Ma, Y., Li, Y., & Chen, H. (2021). Investigation of synergistic effects during co-pyrolysis of biomass and plastics using TGA and kinetic modeling. Journal of Cleaner Production, 280, 124376. https://doi.org/10.1016/j.jclepro.2020.124376
    [155] Liu, G., Huang, Y., Wang, J., & Liu, R. (2020). A review on the thermal-hydraulic performance and optimization of printed circuit hEat exchangers for supercritical CO2 in advanced nuclEar power systems. Renewable and Sustainable Energy Reviews, 133, 110290.
    [156] Starink, M. J. (2003). The determination of activation energy from linEar hEating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta, 404(1-2), 163-176.
    [157] Martín, M. A., Siles, J. A., Chica, A. F., & Martín, A. (2010). Biomethanization of orange peel waste. Bioresource technology, 101(23), 8993-8999.
    [158] Kumar, M., Giri, B. S., Kim, K. H., Singh, R. P., Rene, E. R., López, M. E., ... & Singh, R. S. (2019). Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresource technology, 285, 121317.

    QR CODE