| 研究生: |
吳昆鴻 Wu, Kun-Hong |
|---|---|
| 論文名稱: |
鈷鐵氧體薄膜在可撓式基板上的應變調製拉曼研究 Raman study of strain-modulated CoFe2O4 epitaxial film on a flexible substrate |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 鈷鐵氧體 、亞鐵磁性 、磁致伸縮 、可撓式雲母基板 |
| 外文關鍵詞: | CoFe2O4, magnetostriction, strain, mica, flexible |
| 相關次數: | 點閱:89 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈷鐵氧體(CoFe2O4;CFO)是一種具有亞鐵磁性及磁異向性特徵的材料,並且因為磁致伸縮(magnetostriction)的特性,其在磁性感測器上的應用也被廣泛的討論,之前的文獻已顯示出CFO薄膜的磁性特徵會受到晶格形變的影響而改變。為了討論CFO與應變相關的機制,本研究中將CFO薄膜沉積在可撓式的雲母(mica)基板上,因此可藉由控制雲母基板的曲率半徑來改變施加在CFO薄膜上的應力大小,而應力會扭曲CFO的晶格。本研究中將利用拉曼光譜儀(Raman spectroscopy)量測鈷鐵氧薄膜在不同應力下聲子的振動行為,並且藉由觀察CFO A1g振動模態的頻移可以估算出其晶格常數的變化。之後利用變溫拉曼實驗觀察其振動峰半高寬在不同應力下的變化,並討論應力對CFO發生陽離子躍遷效應的影響,接著利用拉曼振動峰的頻移,觀察施加不同應力時對磁致伸縮效應的影響。最後利用磁力顯微鏡(Magnetic force microscopy;MFM),進一步探討應力對CFO薄膜表面磁矩的影響。
Cobalt ferrite, CoFe2O4, has unique magnetic properties among other spinel ferrites such as high magnetocrystalline anisotropy constant as well as a large magnetostriction constant, which can change its magnetic properties by exert different stress on it, or will change its strain state under a different magnetic field.
The response of CoFe2O4 thin film under different strain state is studied by Raman spectroscopy. We mainly observed the shift of normal mode’s frequency under different strain, and the full width of half maximum under varies temperature with different strain state. CoFe2O4 thin film was deposited on a flexible Muscovite(mica) substrate, which we can exert a stress on CoFe2O4 thin film by curving mica substrate.
The Raman modes show an increase in frequency when increasing an in-plane compress strain. In contrast, it shows a decrease in frequency when increasing an in-plane tensile strain. And the energy that cation migration needs become fewer with increasing stress, thus we can observe cation migration effect with lower temperature.
Different strain state will distort CoFe2O4’s lattice to change the direction of CoFe2O4’s easy axis and affect it magnetic properties. Moreover, different stress on CoFe2O4 will even change it lattice volume.
1.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA, 102, 10451–10453, (2005).
2.P. Blake, et al. Give all authors up to 10. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708, (2008).
3.G. Eda, G. Fanchini, and M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274, (2008).
4.K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, J. Ahn, P. Kim, J. Choi, and B. Hong. “Large-scale pattern growth of graphene films for stretchable transparent electrodes”. Nature 457, 706–710, (2009).
5.Andres Castellanos-Gomez, Menno Poot, Albert Amor-Amorós, Gary A. Steele, Herre S.J. van der Zant, Nicolás Agraït , and Gabino Rubio-Bollinger, “Mechanical properties of freely suspended atomically thin dielectric layers of mica” Nano Research, Volume 5, Number 8 ,550-557, (2012).
6.Essentials of Paleomagnetism: Second Web Edition.
7.姜政熙, “鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電藕合特性”,成功大學,碩士論文,(2008).
8.Bruce M. Moskowitz, Hitchhiker's Guide to Magnetism (1991).
9.B.D CULLITY, C.D. GRAHAM, INTRODUCTION TO MAGNETIC MATERIALS, (2009).
10.簡永順, “釕酸鍶/鈷鐵氧體系統複合結構中的應力調製藕合研究”,成功大學,碩士論文,(2012).
11.張煦、李學養 譯, “磁性物理學”, 第五章 聯經出版社(1992).
12.宛德福, “磁性物理學” 緒論 第一章 電子工業出版社 (1985).
13.Nicola Spaldin, Magnetic Materials, p107 (2003).
14.L. Gracia, A. Beltra´n, J. Andre´s, R. Franco, and J. M. Recio, “Quantum-mechanical simulation of MgAl2O4 under high pressure”, PHYSICAL REVIEW B 66, 224114 (2002).
15.T. Dhakal, D. Mukherjee, R. Hyde, P. Mukherjee, M. H. Phan, H. Srikanth, and S. Witanachchi. “Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation”, JOURNAL OF APPLIED PHYSICS 107, 053914 (2010).
16.R. Sato Turtelli a,∗, M. Atif a, N. Mehmooda, F. Kubelb, K. Biernackad, W. Linertc, R. Grossingera,Cz. Kapustad, M. Sikorad. “Interplay between the cation distribution and production methods in cobalt ferrite” Materials Chemistry and Physics 132 832– 838 (2012).
17.M. Khodaei, S. A. Seyyed Ebrahimi, Yong Jun Park, Jong Mok Ok, Jun Sung Kim, Junwoo Son, Sunggi Baik. “Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0.8Fe2.2O4 thin film by deposition of PZT top layer” Appl. Phys. A 117:1153–1160 (2014).
18.Qi -C. Sun, Christina S. Birkel, Jinbo Cao, Wolfgang Tremel, and Janice L. Musfeldt, “Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles” , American Chemical Society VOL. 6, NO. 6, 4876–4883 (2012).
19.H. Zheng, J. Wang, S. E. Lofland, Z. Ma,L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh. “Multiferroic BaTiO3-CoFe2O4 Nanostructures”, SCIENCE VOL 303 30 JANUARY (2004).
20.O. Chaix-Pluchery, C. Cochard, P. Jadhav, J. Kreisel, N. Dix, F. Sa´nchez, and J. Fontcuberta, “Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering”. APPLIED PHYSICS LETTERS 99, 072901 (2011).
21.Michael Foerster , Milko Iliev , Nico Dix , Xavier Martí , Mykhailo Barchuk , Florencio Sánchez , and Josep Fontcuberta. “The Poisson Ratio in CoFe2O 4 Spinel Thin Films”. Adv. Funct. Mater. 22, 4344–4351 (2012).
22.Mark R. De Guire, Robert C. O’Handley and Gretchen Kalonji, “The cooling rate dependence of cation distributions in CoFe2O4” , J. Appl. Phys. 65, 3167 (1989).
23.T Yu, Z X Shen, Y Shi and J Ding, “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study”, J. Phys.: Condens. Matter 14 L613–L618 (2002).
24.Y. Y. Liao, Y. W. Li, Z. G. Hu, and J. H. Chu. “Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition”, APPLIED PHYSICS LETTERS 100, 071905 (2012).
25.Chul Sung Kim, Seung Wha Lee, Seung Iel Park, Jae Yun Park and Young Jei Oh, “Atomic migration in Ni–Co ferrite”, J. Appl. Phys. 79, 5428 (1996).
26.Deepanshu Sharma and Neeraj Khare, “Tuning of optical bandgap and magnetization of CoFe2O4 thin films” , APPLIED PHYSICS LETTERS 105, 032404 (2014).
27.R.J. Lancashire, “ An Introductory course at UWI, Mona, JAMAICA, Lecture 3”.
28.俞姿宇, “晶場理論 (crystal field theory, CFT)”.
29.Crystal Field Theory : WOLFRAM RESEARCH.
30.Y H Hou, Y J Zhao, Z W Liu, H Y Yu, X C Zhong, W Q Qiu, D C Zeng1 and L S Wen1, “Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4 a first-principles study”, J. Phys. D: Appl. Phys. 43 (2010).
31.Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun,Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can, “Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study”, 物理学报Acta Phys. Sin. Vol. 62, No. 16 (2013).
32.C. Y. Tsai, H. R. Chen, F. C. Chang, W. C. Tsai, H. M. Cheng, Y. H. Chu, C. H. Lai, and W. F. Hsieh, “Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures”, APPLIED PHYSICS LETTERS 102, 132905 (2013).
33.Atif Muhammad, Reiko Sato-Turtelli, Martin Kriegisch, Roland Grössinger, Frank Kubel, and Thomas Konegger, “Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4” JOURNAL OF APPLIED PHYSICS 111, 013918 (2012).
34.汪建民, 材料分析, 中國材料科學學會,(1998).
35.John R. Ferraro, INTRODUCTORY RAMAN SPECTROSCOPY.
36.黃彥欽, “混和相磊晶鐵酸鉍薄膜的相變化”, 成功大學, 碩士論文, (2010).
37.黃英碩, “掃描探針顯微術的原理及應用”, 科儀新知第二十六卷第四期 94.2 (2005).
38.陳力俊, “材料電子顯微鏡學”,行政院國家科學委員會精密儀器發展中心, (2003).
39.王洸富, “屏蔽電荷對108度域壁成核動態機制之影響”, 成功大學, 碩士論文, (2010).
40.林明彥、張嘉升、黎文龍, “原子力顯微儀的原理”, 科儀新知第二十七卷第二期94.10 , (2005).
41.郭政宜、林茱瑩、吳仲卿, “磁力探針顯微術簡介及其應用”, 奈米通訊,第十五卷, 第四期, (2008).
42.“Magnetic Force Microscopy (MFM) Applicable to Dimension™ Series and MultiMode™ Systems”, Digital Instruments, (1996).
43.P. Chandramohan, M.P.Srinivasan, S.Velmurugan, S.V.Narasimhan, “Cation distribution and particle size effect on Raman spectrum of CoFe2O4 “Journal ofSolidStateChemistry184 (2011)
44.J. Larry Verble, “Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite”, PHYSICAL REVIEW B VOLUME 9, NUMBER 12 15 JUNE (1974).
45.成功大學微奈米科技研究中心“薄膜應力量測儀操作手冊”.
46.Fang, WL , “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers” , Journal of Micromechanics and Microengineering , 9 , p230-235 , (1999).
47.王輝清,陳俊維,陳榮陞,“多層薄膜應力分析及探討”,中國機械工程學會第二十四屆全國學術研討會論文集 (2007).
48.M. N. Iliev,D. Mazumdar,J. X. Ma,A. Gupta, F. Rigato, J. Fontcuberta, “Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy”, PHYSICAL REVIEW B 83, 014108 (2011).
49.Christopher L. Muhich, Victoria J. Aston, Ryan M. Trottier, Alan W. Weimer, and Charles B. Musgrave. First-Principles Analysis of Cation Diffusion in Mixed Metal Ferrite Spinels. Chem Mater, 28, 214−226 (2016).
50.DONALD S. MCCLURE, “THE DISTRIBUTION OF TRANSITION METAL CATIONS
IN SPINELS” , J. Phys. Chem. Solidr Pergamon Press . Vol. 3. pp. 311-317 (1957).
51.J. D. DUNITZ and L. E. ORGEL, “ELECTRONIC PROPERTIES OF OXIDES-II TRANSITION-METAL”, J. Phys. Chem. Solids Pergamon Press Vol. 3. pp. 318-323 (1957).