| 研究生: |
陳政陽 Chen, Cheng-Yang |
|---|---|
| 論文名稱: |
應用馬氏-田口系統與統計製程管制圖於即時機台預防保養之警示 Application of Mahalanobis-Taguchi System and Statistical Process Control Charts for the Alerts of Real-time Predictive Maintenance |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 預防保養 、馬氏-田口系統 、移動變異數/共變異數 、MaxMEWMA |
| 外文關鍵詞: | Predictive Maintenance, Mahalanobis-Taguchi System, Moving Variance/Covariance, MaxMEWMA Control Chart |
| 相關次數: | 點閱:152 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體為高技術且高資本密集的產業,以半導體製造來說,在機台設備上裝設大量感測器,擷取機台運作時的各種製程數據,監測機台即時狀況。在機台設備過度損耗前即可得到預警,及時更換,以提高產品品質,也可以隨時掌握機台狀況,預先規劃保養時程,避免非預期當機而影響生產。而且精密自動化系統的規劃將會重大影響生產的成本以及效率,所以在製造過程中提供正確的製程參數、量測產品的缺陷以及追蹤缺陷的原因可有效防止晶圓良率損失的擴大。因此,近年來半導體廠商越來越重視機台狀態資料的收集,透過大量蒐集的即時機台偵測值,使工程人員能夠即時掌握機台狀況。品質的高低是半導體廠營收的關鍵因子,因此利用機台感應器蒐集能夠代表機台狀況的資料,能隨時掌握機台的狀況,進而避免機台異常造成半導體廠的重大損失。
本研究欲建立即時機台狀態監控系統,以某半導體機台SECS/GEM資料蒐集與量測系統擷取機台與產品的即時資料作分析,進而監控機台的即時狀況做為預防保養的依據,避免在機台狀況不佳時生產出品質不良的產品以及停機造成的大量損失。本研究以半導體產業之研磨製程為例,先利用馬氏-田口系統(Mahalanobis-Taguchi System;MTS)找出較能反映機台狀態的重要機台狀態特徵以減少分析時間與成本,再以移動變異數的技術消除機台內不同製程配方(Recipe)對偵測值所造成的影響,然後利用多變量管制圖MaxMEWMA來監控移動變異數,並且依據工程師人力以及異常警訊處理能力來動態調整警示界線,在機台可能有異常時發出警示,提供工程人員一個做預防保養的依據。本研究最後使用歷史之生產資料來驗證此模型,以正常資料作為參照點找出機台狀態之變異,然後定義兩個可調整之參數,再針對不同之廠內情況設計適合的警示界線。
This study proposes a real-time monitoring system for machine’s status based on Mahalanobis-Taguchi system (MTS), moving statistics, MaxMEWMA control charts and dynamic alert limits. First, we collect real-time data from numerous sensors of the SECS/GEM (SEMI Equipment Communication Standard/Generic Equipment Model) system to analyze the machine’s overall status, and then the developed system provides alerts for the engineers as the basis of the predictive maintenance if the machine is in an abnormal status.
We use the grinding process of semiconductor assembly as an example. First, to reduce time and cost for analysis, we utilize MTS to discover significant machine characteristics which can reflect the machine’s status. Secondly, we apply moving variance to remove the discrepancy between multiple recipes running on the same machine; as a result, we are able to use one MaxMEWMA control chart to monitor a machine. Finally, we adjust the alert limits dynamically based on the number of engineers and their availability for solving the abnormal alerts.
Using normal data as the reference to identify the variability of machine status, we provide empirical analysis for our model with historical production data. We then define two adjustable parameters and set the appropriate alert limits according to the availability of engineers to handle the problem machine.
英文部分
Bartholomew-Biggs, M., Zuo, M. J. & Li, X. (2009). "Modelling and optimizing sequential imperfect preventive maintenance." Reliability Engineering & System Safety 94(1): 53-62.
Buenviaje, B., Bischoff, J. E., Roncace, R. A., & Willy, C. J. (2016). "Mahalanobis–Taguchi System to Identify Preindicators of Delirium in the ICU." IEEE Journal of Biomedical and Health Informatics, 20(4), 1205-1212.
Crosier, R. B. (1988). "Multivariate Generalizations of Cumulative Sum Quality-Control Schemes." Technometrics 30(3): 291-303.
Chen, A. and Blue, J. (2009). "Recipe-Independent Indicator for Tool Health Diagnosis and Predictive Maintenance." IEEE Transactions on Semiconductor Manufacturing 22(4): 522-535.
Chen, L., Jiameng, H., & Hongmei, L. (2013). "Application of EMD-AR and MTS for Hydraulic Pump Fault Diagnosis." Journal of Vibroengineering. 15(2).
Dieulle, L., Bérenguer, C., Grall, A. & Roussignol, M. (2003). "Sequential Condition-Based Maintenance Scheduling for a Deteriorating System." European Journal of Operational Research 150(2): 451-461.
Deepa, N., & Ganesan, K. (2016). "Mahalanobis Taguchi System Based Criteria Selection Tool for Agriculture crops." Sādhanā, 41(12), 1407-1414.
Eisinger, S. and Rakowsky, U. K. (2001). "Modeling of Uncertainties in Reliability Centered Maintenance—a Probabilistic Approach." Reliability Engineering & System Safety 71(2): 159-164.
El-Ferik, S. and Ben-Daya, M. (2006). "Age-Based Hybrid Model for Imperfect Preventive Maintenance." IIE Transactions 38(4): 365-375.
Gunay, E. E., & Kula, U. (2016). "Integration of Production Quantity and Control Chart Design in Automotive Manufacturing." Computers & Industrial Engineering, 102, 374-382.
Haldar, N. A. H., Khan, F. A., Ali, A., & Abbas, H. (2017). "Arrhythmia Classification Using Mahalanobis Distance Based Improved Fuzzy C-Means Clustering for Mobile Health Monitoring Systems." Neurocomputing, 220, 221-235.
Jin, X., & Chow, T. W. (2013). "Anomaly Detection of Cooling Fan and Fault Classification of Induction Motor Using Mahalanobis–Taguchi System." Expert Systems with Applications, 40(15), 5787-5795.
Katebi, M., Poortaheri, R., & Moghadam, M. B. (2016). "Economic and Economic Statistical Designs for Three-Level Control Charts." Journal of Statistical Computation and Simulation, 86(8), 1463-1478.
Lee, Y. C., & Teng, H. L. (2009). "Predicting the Financial Crisis by Mahalanobis–Taguchi System–Examples of Taiwan’s Electronic Sector. Expert Systems with Applications." 36(4), 7469-7478.
Lee, Y. C., Hsiao, Y. C., Peng, C. F., Tsai, S. B., Wu, C. H., & Chen, Q. (2015). Using Mahalanobis–Taguchi System, Logistic Regression, and Neural Network Method to Evaluate Purchasing Audit Quality. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 3-12.
Lee, T. H., Hong, S. H., Kwon, H. M., & Lee, M. (2016). Economic Statistical Design of Variable Sampling Interval X ̅ Control Chart Based on Surrogate Variable Using Genetic Algorithms. Management and Production Engineering Review, 7(4), 54-64.
Liao, W., Pan, E. & Xi, L. (2010). "Preventive Maintenance Scheduling for Repairable System with Deterioration." Journal of Intelligent Manufacturing 21(6): 875-884.
Lin, D., Zuo, M. J. & Yam, R. CM. (2001). "Sequential Imperfect Preventive Maintenance Models with Two Categories of Failure Modes." Naval Research Logistics 48(2): 172-183.
Lin, Z. L. and Huang, Y. S. (2010). "Nonperiodic Preventive Maintenance for Repairable Systems." Naval Research Logistics (NRL) 57(7): 615-625.
Liparas, D., Dimitriadis, S. I., Laskaris, N. A., Tzelepi, A., Charalambous, K., & Angelis, L. (2014). "Exploiting the Temporal Patterning of Transient VEP Signals: A Statistical Single-Trial Methodology with Implications to Brain–Computer Interfaces (BCIs)." Journal of Neuroscience Methods, 232, 189-198.
Lowry, C. A., Woodall, W. H., Champ, C. W. & Rigdon, S. E. (1992). "A Multivariate Exponentially Weighted Moving Average Control Chart." Technometrics 34(1): 46-53.
Lv, Y., Gao, J., Gao, Z. & Jiang, H. (2013). Multifractal information fusion based condition diagnosis for process complex systems. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 227(3), 178-184.
Mohan, D., Saygin, C., & Sarangapani, J. (2008). "Real-Time Detection of Grip Length Deviation During Pull-Type Fastening: A Mahalanobis–Taguchi System (MTS)-Based Approach." The International Journal of Advanced Manufacturing Technology, 39(9), 995-1008.
Montgomery, D. C. (2009). Statistical quality control, Wiley New York.
Nakagawa, T. and Mizutani, S. (2009). "A Summary of Maintenance Policies for a Finite Interval." Reliability Engineering & System Safety 94(1): 89-96.
Reséndiz-Flores, E. O., & López-Quintero, M. E. (2016). "Optimal Identification of Impact Variables in a Welding Process for Automobile Seats Mechanism by MTS-GBPSO Approach." The International Journal of Advanced Manufacturing Technology, 1-7.
Saygin, C., Mohan, D., & Sarangapani, J. (2010). "Real-Time Detection of Grip Length During Fastening of Bolted Joints: A Mahalanobis-Taguchi System (MTS) Based approach." Journal of Intelligent Manufacturing, 21(4), 377-392.
Su, C. T., & Hsiao, Y. H. (2007). "An Evaluation of the Robustness of MTS for Imbalanced Data." IEEE Transactions on Knowledge and Data Engineering, 19(10).
Su, C. T., & Hsiao, Y. H. (2009). "Multiclass MTS for Simultaneous Feature Selection and Classification." IEEE Transactions on Knowledge and Data Engineering, 21(2), 192-205.
Su, C. T., Wang, P. C., Chen, Y. C., & Chen, L. F. (2012). "Data Mining Techniques for Assisting the Diagnosis of Pressure Ulcer Development in Surgical Patients." Journal of Medical Systems, 36(4), 2387-2399.
Su, C. T., Chen, K. H., Chen, L. F., Wang, P. C., & Hsiao, Y. H. (2012). "Prediagnosis of Obstructive Sleep Apnea via Multiclass MTS." Computational and Mathematical Methods in Medicine, 2012.
Taguchi, G. and Jugulum, R. (2002). The Mahalanobis-Taguchi Strategy: A Pattern Technology System, John Wiley & Sons.
Tavakoli, M., Pourtaheri, R., & Moghadam, M. B. (2016). "Economic and Economic–Statistical Designs of VSI Bayesian Control Chart Using Monte Carlo Method and ABC Algorithm." Journal of Statistical Computation and Simulation, 1-11.
Wang, Z., Lu, C., Wang, Z., Liu, H., & Fan, H. (2013). "Fault Diagnosis and Health Assessment for Bearings Using the Mahalanobis–Taguchi System Based on EMD-SVD." Transactions of the Institute of Measurement and Control, 35(6), 798-807.
Yeh, A. B., Huwang, L. & Wu, Y. F. (2004). "A Likelihood-Ratios-Based EWMA Control Chart for Monitoring Variability of Multivariate Normal Processes." IIE Transactions 36(9): 865-879.
Zequeira, R. I. and Bérenguer, C. (2006). "Periodic Imperfect Preventive Maintenance with Two Categories of Competing Failure Modes." Reliability Engineering & System Safety 91(4): 460-468.
Zhao, Y. (2003). "On Preventive Maintenance Policy of a Critical Reliability Level for System Subject to Degradation." Reliability Engineering & System Safety 79(3): 301-308.
Zhizhen, Z., Feng, G., & Guannan, L. (2010). "Application of Mahalanobis-Taguchi System to Evaluate the Risk of Rock Burst in Mining." Disaster Advances, 3(4), 479-482.
Zhong, J., & Ma, Y. (2017). "An Integrated Model Based on Statistical Process Control and Maintenance for Two-Stage Dependent Processes." Communications in Statistics-Simulation and Computation, 46(1), 106-126.
中文部分
SECS/GEM簡介,工業技術研究院 (2015),http://secs.itri.org.tw/about-secs-gem.html。
吳耿碩 (1999),「及時機台健康狀況以及動態預防策略」,國立台灣大學工業工程研究所碩士論文。
吳佩馨 (2011),「機台失效預警辨識模型建立-拋光機台為例」,清華大學工業工程與工程管理研究所碩士論文。
呂春瑤 (2009),「半導體製程控制之晶圓允收測試及線上量測參數關係分析」,國立台灣大學工業工程研究所碩士論文。
李知珈 (2013),「半導體廠機台即時製程狀態變異偵測值之分析」,國立成功大學工業與資訊管理研究所碩士論文 。
林宥婷 (2014),「應用馬氏田口系統於醫療急救之預測」,國立清華大學工業工程與工程管理研究所碩士論文。
林耀新 (2009),「應用馬氏田口系統於醫療診斷-以術中壓瘡為例」,國立清華大學工業工程與工程管理研究所碩士論文。
張佳蓉 (2007),「半導體製程與設備之健康指標分析」,國立清華大學工業工程與工程管理研究所碩士論文。
張庭嘉 (2007),「建構半導體黃光製程異常升溫現象之模糊監控技術」,國立清華大學工業工程與工程管理研究所碩士論文。
梁惠姿 (2005),「建構半導體製造過程產品異常資料挖礦技術及其雛型系統之研究」,國立清華大學工業工程與工程管理研究所碩士論文。
陳怡文 (2001),「多種保養動作下動態預防保養策略之研究」,國立清華大學工業工程與工程管理研究所碩士論文。
陳正昌 (2006),「多動作動態預防保養之研究」,國立清華大學工業工程與工程管理研究所碩士論文。
陳妍言 (2007),「機台重要指標之探討」,國立清華大學工業工程與工程管理研究所碩士論文。
陳培穠 (2005),「以統計模式建立半導體製造之異常偵測與分類架構」,國立清華大學工業工程與工程管理研究所碩士論文。
陳正昌、程炳林、陳新豐與劉子鍵 (2009),多變量分析方法-統計軟體應用,第六版,五南圖書出版股份有限公司。
陳威珞 (2015),半導體製造業發展趨勢,台灣趨勢研究。
曹永誠 (2005),先進製程控制技術(APC)導論,電機月刊,174,202-215。
楊芷晴 (2010),「設備動態配置與預防保養之整合研究」,國立臺灣大學工業工程研究所碩士論文。
鄭元婷 (2010),「馬氏-田口系統應用於多維品質特性檢測之研究」,國立成功大學製造資訊與系統研究所博士論文。
鄭芳田與吳偉民 (2011),「雙階段虛擬量測輸出之提升預測精度機制」,國立成功大學研發快訊,18(2)。
機械工業雜誌 (2007),智慧系統工程技術專輯,291期,108-109。
蕭宇翔 (2004),「應用 MTS 於非平衡資料分析之穩健性研究-以行動電話檢測流程為例」,國立交通大學工業工程與管理研究所碩士論文。
戴鴻恩 (2004),「利用半導體製程即時參數值建立缺陷特徵化監控模型」,國立台灣科技大學管理學研究所EMBA碩士論文。