簡易檢索 / 詳目顯示

研究生: 許資永
Hsu, Tzu-Yung
論文名稱: 嵌入氣靜壓軸承之雙軸氣壓伺服平台精密定位控制之研究
Precision Position Control of a Biaxial Pneumatic Servo Table Embedded with Aerostatic Bearing
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 雙軸氣壓伺服平台雙模自調式模糊控制器氣靜壓軸承
外文關鍵詞: biaxial pneumatic servo table, hybrid self-tuning fuzzy controller, aerostatic bearing
相關次數: 點閱:133下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分別使用嵌入式氣靜壓軸承之氣壓缸及圓形平面氣靜壓軸承建構出雙軸氣壓伺服平台,其應用為氣體軸承氣浮原理,期望藉由低摩擦來克服黏滯滑動現象並改善定位精度的穩定性。首先設計一摩擦力量測平台,並進行氣壓平台及氣壓缸量測,繪製摩擦力與速度之關係圖。本文使用雙模自調式模糊控制器配合閥軸無感區補償及緩衝補償,由實驗結果可知,在不同的定位情況下,定位精度均可達0.08μm以內,且穩定性相當高,並設計解耦合補償器,能有效克服系統在雙軸運動時所發生的耦合現象;最後,根據定位控制結果設計一速度迴授補償器,能使系統快速進入穩度誤差減少系統振盪且提高定位精度。

    This paper is to built a biaxial pneumatic servo table by combining the air cylinder embedded with aerostatic bearing and a aerostatic bearing, which is used non-contact characteristic of aerostatic bearing in its application, expect to overcome the stick-slip phenomenon and improve the stability of the precision positioning. The friction forces of the biaxial pneumatic servo table are measured, and plot the relation figure of frictional force and speed. The hybrid self-tuning fuzzy controller with the compensators of buffer and servo-valve dead-zone are proposed in this paper. From the experimental results, in case of different position, the positioning accuracy can reach within the 0.08μm, and system has highly stability. Design a decoupling compensator, which can overcome the system coupling phenomena taken place while moving in double axes of the system effectively. Eventually, according to positioning control result design a velocity feedback of compensators, which can make system reduce oscillation and rise the positioning accuracy.

    中文摘要………………………………………………………………Ⅰ 英文摘要……………………………………………………………… Ⅱ 誌謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 表目錄………………………………………………………………… Ⅶ 圖目錄………………………………………………………………… VIII 符號說明……………………………………………………………… XI 第一章 緒論…………………………………………………………… 1 1-1 前言………………………………………………………………… 1 1-2 研究動機…………………………………………………………… 1 1-3 文獻回顧…………………………………………………………… 3 1-4 研究目的及方法…………………………………………………… 4 第二章 嵌入氣靜壓軸承之氣壓伺服定位平台系統 ………………… 6 2-1 嵌入氣靜壓軸承之氣壓伺服定位平台系統……………………… 6 2-1-1 嵌入氣靜壓軸承之氣壓缸……………………………………… 8 2-1-2 氣靜壓圓形平面軸承及定位平台……………………………… 12 2-2 摩擦力量測平台…………………………………………………… 17 2-3 實驗設備…………………………………………………………… 19 第三章 嵌入氣靜壓軸承之氣壓伺服系統數學模式………………… 23 3-1 氣壓缸數學模式…………………………………………………… 23 3-2 比例閥控氣壓缸之數學模式……………………………………… 24 3-2-1 伺服閥的數學模式……………………………………………… 24 3-2-2 流經孔口的空氣質量流率……………………………………… 25 3-2-3 控制容積之數學模式…………………………………………… 26 3-2-4 氣壓系統之線性化……………………………………………… 30 第四章 控制理論……………………………………………………… 34 4-1 模糊控制理論……………………………………………………… 34 4-1-1 模糊化界面……………………………………………………… 36 4-1-2 決策邏輯………………………………………………………… 37 4-1-3 解模糊化界面……………………………………………………37 4-1-4 知識庫…………………………………………………………… 38 4-2 自調式模糊控制理論……………………………………………… 39 第五章 控制器設計…………………………………………………… 42 5-1 定位控制器的設計………………………………………………… 42 5-1-1 雙模的自調式模糊控制器架構………………………………… 42 5-1-2 歸屬函數建立…………………………………………………… 45 5-1-3 模糊推論規則表………………………………………………… 46 5-1-4 尺度因子………………………………………………………… 47 5-1-5 模糊控制器和尺度因子的解模糊化…………………………… 50 5-1-6 閥軸無感區補償及緩衝補償…………………………………… 50 5-2 解耦合補償控制器設計…………………………………………… 54 5-3 速度回授補償器設計……………………………………………… 57 第六章 實驗結果與討論 ……………………………………………… 60 6-1 摩擦力量測結果…………………………………………………… 60 6-2 定位控制結果……………………………………………………… 61 6-2-1 單軸步階定位控制及穩定性分析結果………………………… 62 6-2-2 微多步階定位控制結果………………………………………… 68 6-3 解耦合補償定位控制結果…………………………………………69 6-3-1 未使用解耦合補償控制器定位控制結果…………………… …69 6-3-2 使用解耦合補償控制器定位控制結果………………………… 73 6-4 速度回授補償定位控制結果及穩定性分析……………………… 77 第七章 結論與未來建議……………………………………………… 80 參考文獻……………………………………………………………… 82 自 述…………………………………………………………………… 85

    參考文獻
    [1] H.E. Merritt, “Hydraulic Control System” ,John Willey & Sons Inc., 1967

    [2] J.F. Blackburn, G. Reethof , J.L. Shearer,“Fluid Power Control” ,M.I.T. Press, 1960

    [3] 蘇雅玲,”氣靜壓軸承式氣壓缸及定位平台設計與控制之研究”,國立成功大學機械工程研究所碩士論文,2005

    [4] 曾釋毅,”自調式PID控制伺服氣壓缸位置之研究”,國立成功大學機械工程研究所碩士論文,1992

    [5] 羅年良,“氣壓缸位置與壓力伺服控制系統之研究”, 國立成功大學機械工程研究所碩士論文, 1999

    [6] 黃建銘, “長行程氣壓無桿缸同步運動之研究”, 國立成功大學機械工程研究所碩士論文,2000

    [7] 顏瑞宏,“氣壓缸位置以模糊斷續式非線性增益控制之研究”, 國立成功大學機械工程研究所碩士論文,2001

    [8] 何啟吉, “氣壓缸與步進馬達作雙軸運動之位置控制研究”,國立成功大學機械工程研究所碩士論文,2002

    [9] Fujita T, Tokashiki R, Kagawa T. “Stick-slip motion in pneumatic cylinders driven by meter-out circuit”. Proc. of the 4th JHPS International Symposium on Fluid Power, p131-136, 1999.

    [10] Kazama T, Fujiwara M. “Experiment on frictional characteristics of pneumatic cylinders”, Proc. of the 4th JHPS International Symposium on Fluid Power, p453-458, 1999.

    [11] K. R. Pai, M. C. Shih,”Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table”, International Journal of JSME, Series C,Vol.46,.No.3, p.1062-1068, 2003.

    [12] 鄭奇能,“氣壓缸精密定位設計與控制於受垂直負荷之研究”, 國立成功大學機械工程研究所碩士論文,2005.

    [13] 十合晉一著,賴耿陽譯著,”氣體軸承—從設計到製造”,復漢出版社,1985.

    [14] Potter M.C., Wiggert D.C., Mechanics of Fluid, 2nd Ed., Prentice-Hall, Inc. 1997.

    [15] 黃啟華,”虛擬口形氣浮導軌之精密線性滑動平台特性分析”,國立雲林科技大學機械工程系碩士論文,2001

    [16] 王彥欣,”氣靜壓高速主軸止推軸承設計與性能分析”,國立彰化師範大學工業教育學系碩士論文,2000,

    [17] D. McCloy, H. Martin, “Control of Fluid Power”, 2nd ed., Ellis Horwood , 1980

    [18] Edmond Richer, ”A High Performance Pneumatic Force actuator system Part I-Nonlinear mathematical Model”, Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, Vol. 122,No. 3, P416-425, 2000

    [19] J.H. Horlock, W.A. Woods, “The Thermodynamics of Charging and Discharging Process” , Proc. Inst. Mech. Engrs, 1965-66

    [20] 黨根茂,”氣體潤滑技術”,東南大學出版社,1990.

    [21] L.A. Zadeh, “Fuzzy sets” ,Information and Control, Vol. 8, p338-353, 1965.
    [22] E. Mamdani, “Application of fuzzy algorithm for control of simple dynamic plant” ,Proc. IEE, Vol. 121, No. 12, p 1585-1588, 1974.

    [23] C.C. Lee, “Fuzzy logic in control systems:fuzzy logic controller-Part Ⅰ” ,IEEE Trans. SMC, Vol. 20, No. 2, p 404-418, 1990.

    [24] C.C. Lee, “Fuzzy logic in control systems:fuzzy logic controller-Part Ⅱ” ,IEEE Trans. SMC, Vol. 20, No. 2, p 419-435, 1990.

    [25] L.A. Zadeh, “Outline of a new approach to the analysis comples systems and decision process” ,IEEE Trans. Syst. Man Cybern. ,Vol. SMC-3, No. 1, p 28-44, 1973.

    [26] Y.F. Li & C.C. Lau, “Development of fuzzy algorithms for servo systems” ,IEEE Control Systems Magazine, Vol. 9, No. 3, p 65-72, 1989.

    [27]王進德、蕭大全,”類神經網路與模糊控制理論入門”,全華科技,1994.

    [28] D.Driankov, H.Hellendoorn, and M. Teinfrank. “An Introduction to Fuzzy control”, Springer-Verlag Berlin Heidelberg, 1993.

    [29] Mudi, Rajani K.; Pal, Nikhil R.,”Robust self-tuning scheme for PI- and PD-type fuzzy controllers” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, p 2-16, 1999.

    [30] R. Palm, “scaling of fuzzy controller using the cross-correlation”, IEEE Trans. Fuzzy Syst., Vol. 26,No. 5, p 791-799, 1996.

    [31]陳俊毓,”長行程奈米精度氣壓-壓電混合精密伺服定位XY平台設計與智慧型控制”,國立台灣科技大學自動化及控制研究所碩士論文,2004.

    [32] Ying-Tasi Wang,Ming-Kun Chang, “Experimental Implementations of Decoupling Self-Organizing Fuzzy Control to TITO Pneumatic Position Control System“, JSME ,Vol. 42,No. 1,p85-92,1999.

    下載圖示 校內:立即公開
    校外:2006-07-24公開
    QR CODE