簡易檢索 / 詳目顯示

研究生: 陳品卉
Chen, Pin-Hui
論文名稱: 單晶碲化鉍/硒化鉍拓樸絕緣體多層膜之磊晶成長及結構研究
Epitaxial Growth and Structural Characterization of Single Crystalline Bi2Te3/Bi2Se3 Topological Insulator Multilayer
指導教授: 黃榮俊
Huang, J. C. A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 97
中文關鍵詞: 碲化鉍硒化鉍拓樸絕緣體多層膜拉曼光譜
外文關鍵詞: Bi2Te3, Bi2Se3, topological insulator, multilayer, Raman spectra
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過分子束磊晶(MBE),碲化鉍/硒化鉍拓樸絕緣體多層膜被成功成長在藍寶石基板上,由臨場高能量電子繞射儀(RHEED)及原子力顯微鏡(AFM)顯示這些薄膜平滑的表面,經由X光繞射(XRD)看出碲化鉍/硒化鉍多層膜為單晶(000l)結構。多層膜的拉曼光譜同時顯示了碲化鉍和硒化鉍的聲子震盪模式,且與單層膜相比有顯著的偏移,此峰值偏移主要來自於碲化鉍和硒化鉍介面的擴散。此外,峰值的半高寬隨著層數增加而變寬,這是多層膜中晶格扭曲所造成的。

    Bi2Te3/Bi2Se3 topological insulator multilayers have been successfully established on Al2O3 (0001) substrates by molecular beam epitaxy (MBE). In-situ reflection high energy electron diffraction (RHEED) and ex-situ atomic force microscopy (AFM) indicate the smooth surface of the thin films. XRD reveals that the Bi2Te3/Bi2Se3 multilayers are single crystalline (000l) structure. Raman spectra of the multilayers show both the Bi2Te3 and Bi2Se3 phonon vibrational modes with obvious shift comparing to the single-layer films. The peak shift is mainly due to the diffusion between the Bi2Te3 and Bi2Se3 interface. Besides, the full width at half maximum (FWHM) broadens as the layer increases. This is due to the lattice distortion existing in the multilayers.

    Abstract (in English) ………………………………………………………….I Abstract (in Chinese) ………………………………………………………...II Acknowledgement ………………………………………………………......III Contents ………………………………………………………......................V List of tables ………………………………………………………............VIII List of figures ……………………………………………………….............IX Chapter 1. Introduction ……………………………………1 1.1 Introduction …………………………………………………………1 1.1.1 The development of topological insulator …………………….2 1.2.2 The characteristics of Bi2Se3 and Bi2Te3 ………………………5 1.2 Paper reviews for MBE growth of Bi2Se3 and Bi2Te3 ………………9 1.2.1 MBE growth of Bi2Se3 ………………………………….……..9 1.2.2 MBE growth of Bi2Te3 ……………………………………….14 1.3 Paper reviews for Raman spectroscopy ……………………………18 1.4 Motivation …………………………………………………………27 References ……………………………………………………………..28 Chapter 2. Theories and principles ……………………….32 2.1 Thin-film growth theory …………………………………………...32 2.1.1 Growth modes ……………………………………………….32 2.1.2 Growth theory ……………………………………………….34 2.2 Raman spectroscopy ……………………………………………….36 2.2.1 Historical background ……………………………………….36 2.2.2 The mechanism of Raman spectroscopy …………………….37 2.2.3 Classical theory of Raman scattering ………………………..39 2.2.4 The vibrational modes for Bi2Se3 and Bi2Te3 ………………...40 References ……………………………………………………………..42 Chapter 3. Experimental equipment and principles ……...43 3.1 Molecular beam epitaxy (MBE) …………………………………...44 3.1.1 The fundamental of MBE ……………………………………45 3.1.2 The MBE system …………………………………………….46 3.1.3 Evaporators …………………………………………………..48 3.1.4 Sample preparation …………………………………………..51 3.2 Sample characterization techniques ……………………………….52 3.2.1 Reflection high energy electron diffraction (RHEED) ……...52 3.2.2 Atomic force microscopy (AFM) ……………………………54 3.2.3 X-ray diffraction (XRD) ……………………………………..57 3.3 Micro Raman spectrometer ………………………………………..60 References ……………………………………………………………..62 Chapter 4. Structural characterization of Bi2Te3/Bi2Se3 multilayers …................................................63 4.1 The structure of Bi2Te3/Bi2Se3/Al2O3(0001) at different growth temperatures ……………………………………………………...64 4.1.1 Experiment …………………………………………………..64 4.1.2 RHEED and AFM images …………………………………...65 4.1.3 XRD spectra …………………………………………………67 4.1.4 Summary …………………………………………………….69 4.2 The structure of the multilayers ……………………………………70 4.2.1 Experiment …………………………………………………..70 4.2.2 The multilayer growth process ………………………………71 4.2.3 RHEED and AFM images of 2~16 layers …………………...72 4.2.4 XRD spectra of 2~16 layers …………………………………75 4.2.5 Summary …………………………………………………….77 References ……………………………………………………………..78 Chapter 5. Raman spectroscopy ………………………….79 5.1 Raman spectra of Bi2Se3 and Bi2Te3 ……………………………….80 5.1.1 Raman spectra of the thin films ……………………………...80 5.1.2 Comparison of Raman peaks between thin film and bulk …..82 5.1.3 Summary …………………………………………………….84 5.2 Raman spectra of multilayers ……………………………………...85 5.2.1 Peak shift in Raman spectra for multilayers …………………87 5.2.2 Peak shift and diffusion ……………………………………...88 5.2.3 FWHM and lattice distortion ………………………………...90 5.2.4 Summary …………………………………………………….95 References ……………………………………………………………..96 Chapter 6. Conclusions …………………………………...97

    Chapter 1.
    [1] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, Nature Phys. 5, 438 (2009).
    [2] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
    [3] Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nature Phys. 5, 398 (2009).
    [4] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).
    [5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005)
    [6] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007)
    [7] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
    [8] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
    [9] X. L. Qi and S. C. Zhang, Phys. Today 63, No. 1, 33 (2010).
    [10] J. E. Moore, Nature (London) 464, 194 (2010).
    [11] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009)
    [12] S. K. Mishrayz, S. Satpathyyz and O. Jepsen, J. Phys.: Condens. Matter 9, 461(1997).
    [13] T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, Phys. Rev. B 68, 085201 (2003).
    [14] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
    [15] B. A. Bernevig, T. L. Hughes, S. C. Zhang, Science 314, 1757 (2006).
    [16] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang, Science 318, 766 (2007).
    [17] C. Kane and J. Moore, Physics World, 32 (2011).
    [18] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).
    [19] X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
    [20] M. Zahid Hasan, and J. E. Moore, Annu. Rev. Condens.Matter Phys. 2, 55 (2011).
    [21] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301 (2010)
    [22] N. Bansal, Y. S. Kim, M. Brahlek, Eliav Edrey, and Seongshik Oh, Phys. Rev. Lett. 109, 116804 (2012).
    [23] D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione and M. S. Fuhrer, Nature Phys. 8, 459 (2012).
    [24] J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, and Q. Xiong, Nano Lett. 11, 2407 (2011).
    [25] K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 96,153103 (2010)
    [26] K. M. F. Shahil, M. Z. Hossain, V. Goyal, and A. A. Balandin, J. Appl. Phys. 111,054305 (2012)
    [27] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010)
    [28] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
    [29] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
    [30] Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang , X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 22, 4002 (2010).
    [31] W. Richter, H. Kohler, and C. R. Becker, Phys. Status Solidi. B 84, 619 (1977).
    [32] G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X. Dai, Z. Fang, and K. H. Wu, Appl. Phys. Lett. 95, 053114 (2009).
    [33] C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. Wang, K. He, X. Chen, J. F. Jia, Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. Ma, Appl. Phys. Lett. 97, 143118 (2010).
    [34] X. Chen , X. C. Ma , K. He , J. F. Jia , and Q. K. Xue, Adv. Mater. 23, 1162 (2011).
    [35] S. Nakajima, J. Phys. Chem. Solids 24, 479 (1962).
    [36] Natl. Bur. Stand. (U.S.) Monogr. 25, volume 18, page 16 (1981).
    [37] Natl. Bur. Stand. (U.S.) Monogr. 25, volume 3, page 16 (1964).
    [38] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
    [39] C. Z. Chang, K. He, L. L. Wang, X. C. Ma, M. H. Liu, Z. C. Zhang, X. Chen, Y. Y. Wang and Q. K. Xue, World Scientific 1, 21 (2011).
    [40] S. A. Scott, M. V. Kral and S. A. Brown, Appl. Surf. Sci. 252, 5563 (2006).
    [41] S. E. Harrison, S. Li, Y. Huo, B. Zhou, Y. L. Chen, and J. S. Harris, Appl. Phys. Lett. 102, 171906 (2013).
    [42] G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater. 23, 2929 (2011).
    [43] O. Madelung, U. Rössler, M. Schulz, Eds., Semiconductors, Non-Tetrahedrally Bonded Elements and Binary Compounds I (Springer-Verlag, Berlin, 1998).
    [44] S. L. Zhang, S. N. Wu, Y. Yan, T. Hu, J. Zhao, Y. Song, Q. Qu and W. Ding, J. Raman Spectrosc. 39, 1578 (2008).
    [45] X. Liu, D. J. Smith, J. Fan, Y. H. Zhang, H. Cao, Y. P. Chen, J. Leiner, B. J. Kirby, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett. 99, 171903 (2011).

    Chapter 2.
    [1] J. C. A. Huang, PhD. Thesis, University of Illionis (1992).
    [2] S. A. Chambers, Surface Science Report 39, 105 (2000).
    [3] A. Smekal, "Zur Quantentheorie der Dispersion", Naturwissenschaften 11, 43 (1923).
    [4] C. V. Raman, "A new radiation". Indian J. Phys. 2, 387 (1928).
    [5] J. R. Ferraro, K. Nakamoto and C.W. Brown, Introductory Raman Spectroscopy (Academic Press, 2003).
    [6] D. H. Rank and R. V. Wiegand, J. Opt. Soc. Am. 32, 190 (1942).
    [7] J. R. Ferraro, R. Jarnutowski and D. C. Lankin, Spectroscopy 7, 30 (1992).
    [8] P. A. Tripler and R. A. Llewellyn, Modern Physics (W. H. Freeman and Company, New York, 2008).
    [9] J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, and Q. Xiong, Nano Lett. 11, 2407 (2011).
    [10] W. Richter, H. Kohler, and C. R. Becker, Phys. Status Solidi. B 84, 619 (1977).
    [11] K. M. F. Shahil, M. Z. Hossain, V. Goyal, and A. A. Balandin, J. Appl. Phys. 111,054305 (2012)
    [12] A. Soni, Z. Yanyuan, Y. Ligen, M. K. K. Aik, M. S. Dresselhaus, and Q. Xiong, Nano Lett. 12, 1203 (2012).

    Chapter 3.
    [1] M. A. Herman and H. Sitter, Molecular Beam Epitaxy (Springer-Verlag, Berlin, 1989)
    [2] J. C. A. Huang, PhD. Thesis, University of Illionis (1992).
    [3] X. Chen , X. C. Ma , K. He , J. F. Jia , and Q. K. Xue, Adv. Mater. 23, 1162 (2011).
    [4] C. Z. Chang, K. He, L. L. Wang, X. C. Ma, M. H. Liu, Z. C. Zhang, X. Chen, Y. Y. Wang and Q. K. Xue, World Scientific 1, 21 (2011).
    [5] 詹東霖,國立成功大學碩士論文 (2012).
    [6] 沈士育,國立成功大學碩士論文 (2012).
    [7] R. A. Wilson and H. A. Bullen, Introduction to Scanning Probe Microscopy.
    [8] Martin T. Dove, Structure and Dynamics (Oxford University Press, New York, 2003).
    [9] B.D. Cullity, Elements of X-ray Diffraction (Addison Press, Reading, 1978).
    [10] B.E. Warren, X-ray Diffraction (Dover, New York, 1990).

    Chapter 4.
    [1] Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang , X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 22, 4002 (2010).
    [2] X. Chen, X. C. Ma, K. He, J. F. Jia, and Q. K. Xue, Adv. Mater. 23, 1162 (2011).
    [3] 詹東霖,國立成功大學碩士論文 (2012).
    [4] 沈士育,國立成功大學碩士論文 (2012).
    [5] S. Nakajima, J. Phys. Chem. Solids 24, 479 (1962).
    [6] C. Z. Chang, K. He, L. L. Wang, X. C. Ma, M. H. Liu, Z. C. Zhang, X. Chen, Y. Y. Wang and Q. K. Xue, World Scientific 1, 21 (2011).
    [7] 陳威寧,國立成功大學碩士論文 (2013).

    Chapter 5.
    [1] J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus, and Q. Xiong, Nano Lett. 11, 2407 (2011).
    [2] K.M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 96,153103 (2010)
    [3] K. M. F. Shahil, M. Z. Hossain, V. Goyal, and A. A. Balandin, J. Appl. Phys. 111,054305 (2012)
    [4] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett. 10, 751 (2010)
    [5] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
    [6] W. Richter, H. Kohler, and C. R. Becker, Phys. Status Solidi. B 84, 619 (1977).
    [7] X. Liu, D. J. Smith, J. Fan, Y.-H. Zhang, H. Cao et al, Appl. Phys. Lett. 99, 171903 (2011).
    [8] Natl. Bur. Stand. (U.S.) Monogr. 25, volume 18, page 16 (1981)
    [9] Natl. Bur. Stand. (U.S.) Monogr. 25, volume 3, page 16 (1964)
    [10] A. Soni, Z. Yanyuan, Y. Ligen, M. K. K. Aik, M. S. Dresselhaus, and Qihua Xiong, Nano Lett. 12, 1203 (2012).
    [11] S. Nakajima, J. Phys. Chem. Solids 24, 479 (1962).
    [12] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, Nature Phys. 5, 438 (2009).
    [13] C. Z. Chang, K. He, L. L. Wang, X. C. Ma, M. H. Liu, Z. C. Zhang, X. Chen, Y. Y. Wang and Q. K. Xue, World Scientific 1, 21 (2011).

    下載圖示 校內:2016-08-20公開
    校外:2016-08-20公開
    QR CODE