簡易檢索 / 詳目顯示

研究生: 莊喬棻
Chuang, Chiao-Fen
論文名稱: 雷射與熱製程對超薄玻璃之機械性質影響與應用
Effect of Laser and Thermal Processing on the Material Properties and Manufacturability of Ultra-Thin Glass
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 162
中文關鍵詞: 化學強化玻璃雷射切割殘留應力壓痕法熱應力裂片
外文關鍵詞: Strengthened glass, laser cutting, residual stress, indentation, thermal shock
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超薄化學強化玻璃因具有高強度及高硬度,廣泛被應用在智慧型行動裝置的保護玻璃上,而為了加工至指定的外型,其殘留應力導致的切割困難勢必得被克服。除了要能成功的切割裂片,切割完成後之邊緣品質也是相當重要的指標,然而傳統的CO2雷射切割裂片不但在處理化學強化玻璃上表現較差,對於切割幾何為封閉內孔的形狀也難以發揮。近年雷射長光刀切割的技術大量被開發及應用,國外大廠相繼提出相關技術,對於光路的掌握及切割國內的廠商已有一定的成果,但關鍵的內孔裂片技術仍被國外廠商所把持,對國內產業深耕此項技術有很大的阻礙。本文以改善整體切割製程為核心價值,首先希望能了解在雷射作用的高溫之下,化學強化玻璃性質的變化機制來做為熱退應力及相關技術開發、優化的參考資訊;另外,長光刀切割極具展潛力,但關鍵內孔裂片技術仍未掌握,故國內若想自主發展此極具應用價值的切割技術,則需針對其後續內孔裂片機制的探討。本研究的內容主要可以分成兩大部分,第一部分以熱處理來模擬雷射造成的高溫對化學強化玻璃加熱,再針對其做應力及一系列材料性質的檢測與綜合討論,以之為基礎探討雷射加熱來退應力後切割的可行性,以及提供雷射加工製程材料方面的理解;第二部分我們以長光刀切割封閉圓內孔做對象,提出裂片機制的發想與進行實際的測試,並在最後建立一套高邊緣品質的裂片技術。在研究成果的部分,本文成功以熱處理實現對化學強化玻璃的退應力,並發現其牽涉到複雜的材料機制變化,不僅是殘留應力,也會對其機械性質及破壞特性有很大的影響,類似的退應力製程應相當注意這一點,才能對後續的切割裂片有更好的掌握,而提高加熱的溫度能大幅縮短材料改質所需的時間,故有以雷射來進行退應力的機會;而在長光刀切割裂片製程開發的部分,本研究成功建立一套具有高品質及實用價值的熱應力裂片技術,不僅如國外廠商展示的可以成功的裂片下料,且也展示了其裂片後的邊緣品質,缺陷的最大尺寸皆壓制在15μm下,已有可立即應用至產線上的水準,此技術的開發為國內深耕長光刀切割技術做出關鍵的貢獻。

    Chemically strengthened ultrathin glasses have been widely used in the display unit due to their inherent high strength for resisting possible damages. However, such an advantage also brings struggles in fabrication. In particular, cutting inner structures such as holes for camera or microphone assembly represents a challenging task for these strengthen glasses. Technically, the requirement eliminates the possibility of using traditional cutting wheels. Meanwhile, the high stresses resulted from the toughening process could easily induce uncontrollable crack propagation from flaws created during machining. Recently, fast laser ablation becomes a promising approach for handling strengthened glasses. The process can create deep micro holes array on glass. It is then possible to create controllable sub-critical crack growth from those holes for separating the glass to form hollow structures. However, such a process involves complicate pyrolytic interaction between laser and glass materials. In addition, extra auxiliary stressing processes should also be developed for achieving a reliable glass separation. In this work, the material properties of strengthen glass subjected to thermal processing are investigated for providing fundamental knowledges. Young’s modulus, hardness, residual stress, and toughness are characterized by using nano- and micro- indenters. It shows that the hardness reduced substantially once the annealing temperature exceeds 500C for 30 minutes. Furthermore, at the same processing condition, the toughness also exhibits a considerable enhancement. Finally, an auxiliary separation process based on thermal shock is proposed and realized for creating low chipping level separation. Experiments on creating circular structures are then performed with different heating and cooling conditions for demonstrating the applicability of the developed solutions. The micrographs indicated that the chipping level of the edge is less than 15m and is satisfied for the current needs.

    摘要 I Abstract II Extend Abstract III 致謝 XVI 目錄 XVIII 表目錄 XXIII 圖目錄 XXIV 符號說明 XXXI 第一章 緒論 1 1.1 前言 1 1.2 雷射切割玻璃之文獻回顧 3 1.3 研究動機與目的 9 1.3.1 研究動機 9 1.3.2 研究目的 10 1.4 研究方法 12 1.5 本文架構 14 第二章 研究背景介紹 17 2.1 本章介紹 17 2.2 超薄玻璃之介紹與應用 19 2.3 玻璃強化機制介紹 22 2.3.1 物理強化 22 2.3.2 化學強化 24 2.4 雷射切割製程介紹 28 2.4.1 預劃線輔助雷射裂片技術 29 2.4.2 冷源輔助雷射裂片技術 31 2.4.3 封閉內孔切割技術 35 2.5 本章總結 38 第三章 壓痕檢測技術與破壞力學理論簡介 39 3.1 本章介紹 39 3.2 破壞力學相關理論 40 3.3 壓痕法簡介 44 3.4 破壞韌性 47 3.5 奈米壓痕理論 51 3.6 本章結論 54 第四章 化學強化玻璃之熱退應力實驗規劃 55 4.1 本章介紹 55 4.2 熱製程退應力 57 4.3 熱退應力後性質檢測 58 4.3.1 殘留應力量測 59 4.3.2 機械性質量測 60 4.3.3 破壞韌性量測 61 4.3.4 四點彎曲系統建立與實驗 62 4.4 本章總結 65 第五章 化學強化玻璃之熱退應力實驗結果與討論 67 5.1 本章介紹 67 5.2 殘留應力量測 68 5.2.1 殘留應力實驗結果 68 5.2.2 殘留應力討論 70 5.3 楊氏係數與硬度量測結果 72 5.4 破壞韌性量測結果 77 5.4.1 不同強化程度玻璃之裂痕長度比較 77 5.4.2 強化玻璃經不同熱處理條件之裂痕長度比較 80 5.4.3 熱處理後破壞韌性之推算 84 5.5 四點彎曲實驗結果與討論 88 5.5.1 素玻璃測試結果 88 5.5.2 化學強化玻璃實驗結果 89 5.5.3 四點彎曲實驗結果與討論 91 5.6 熱處理退應力結果討論 94 5.7 本章總結 98 第六章 長光刀切割封閉圓路徑之裂片分析 99 6.1 本章介紹 99 6.2 皮秒雷射作用切割道之介紹 101 6.3 概念性測試實驗(一):疲勞負載裂片 108 6.3.1 疲勞負載裂片之概念與實驗架設 108 6.3.2 疲勞負載裂片測試實驗結果 110 6.4 概念性測試實驗(二):熱應力裂片 113 6.4.1 熱應力裂片之概念與實驗架設 113 6.4.2 熱應力裂片測試實驗結果 115 6.4.3 熱應力分析 118 6.5 裂片實驗架設 120 6.6 本章結論 122 第七章 長光刀切割封閉圓路徑之裂片結果與討論 123 7.1 本章介紹 123 7.2 封閉圓路徑之單面冷卻裂片結果 125 7.2.1 一次性吹落裂片方式 126 7.2.2 多次輕微力道吹氣冷卻 130 7.3 封閉圓路徑之雙面冷卻裂片結果 132 7.3.1 按壓式噴霧測試 132 7.3.2 調壓閥搭配氣瓶之冷卻系統 132 7.4 實驗結果與討論 135 7.4.1 冷源的差異 135 7.4.2 吹氣方式的差異 136 7.4.3 雙面吹氣實驗結果討論 137 7.4.4 吹氣冷卻實驗總結 137 7.4.5 不同幾何形狀的應用 138 7.5 本章結論 142 第八章 研究結果與討論 143 8.1 全文歸納 143 8.2 研究結果討論 145 8.2.1 化學強化玻璃熱退應力實驗結果 145 8.2.2 封閉圓內孔裂片之概念性測試 146 8.2.3 封閉圓內孔之單面冷卻熱應力裂片 147 8.2.4 封閉圓內孔之雙面冷卻熱應力裂片 148 8.3 未來展望與未來工作 149 8.4 本章結論 152 第九章 結論與未來展望 153 9.1 本文結論 153 9.2 本文貢獻 155 9.3 未來工作 156 參考文獻 157 自述 163

    [1] Apple Inc., iPhone6, https://www.apple.com/tw/iphone/
    [2] 維基百科, 液晶顯示器結構, https://zh.wikipedia.org/wiki/%E6%B6%B2%E6%99%B6%E6%98%BE%E7%A4%BA%E5%99%A8
    [3] R. Lumley, "Controlled separation of brittle materials using a laser." Am Ceram Soc Bull, vol. 48, pp. 850-54, 1969.
    [4] C. H. Tsai, and C. S. Liou, "Fracture mechanism of laser cutting with controlled fracture." Journal of Manufacturing Science and Engineering, vol. 125, pp. 519-528, 2003.
    [5] W. Verheyen, A. Raes, J. P. Coopmans, and J. L. Lambert , "Glass cutting, " U.S. Patent No. 3,932,726, Jan. 13, 1976.
    [6] C. H. Tsai and B. W. Huang, "Diamond scribing and laser breaking for LCD glass substrates," Journal of Materials Processing Technology, Vol. 198, pp. 350-358, 2008.
    [7] K. Yahata, K. Yamamoto, and E. Ohmura, "Crack propagation analysis in laser scribing of glass." Journal of Laser Micro/Nanoengineering, vol. 5, 2010.
    [8] A. A. Abramov, M. L. Black, and G. S. Glaesemann, "Laser separation of chemically strengthened glass." Physics Procedia, vol. 5, pp. 285-90, 2010.
    [9] K. L. Wlodarczyk, A. Brunton, P. Rumsby, and D. P. Hand, "Picosecond laser cutting and drilling of thin flex glass." Optics and Lasers in Engineering, vol. 78, pp. 64-74, 2016.
    [10] M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. Dudley, "High aspect ratio nanochannel machining using single shot femtosecond bessel beams." Applied Physics Letters, vol. 97, 081102, 2010.
    [11] M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner and S. Nolte, "Comparison of different processes for separation of glass and crystals using ultra short pulsed lasers." International Society for Optics and Photonics, vol. 8972, 897214, 2014
    [12] L. A. B. Pilkington, "Review lecture. The float glass process." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 314, pp. 1-25, 1969.
    [13] Corning Inc., 康寧超薄可撓式玻璃, https://www.corning.com/tw/zh_tw/about-us/news-events/news-releases/2012/06/newsrelease-48317.html
    [14] 工業技術研究院, 雷射修邊技術介紹, https://www.itri.org.tw/chi/Content/Publications/contents.aspx?&SiteID=1&MmmID=2000&MSid=655356702205437720
    [15] T. C. Chiu, C. A. Hua, C. H. Wang, K. S. Chen, T. S. Yang, C. D. Wen, C. H. Li, M. C. Lin, C. J. Huang, and K. T. Chen, "On the mechanics of laser peeling for ultra-thin glasses." Engineering Fracture Mechanics, vol. 163, pp. 236-47, 2016.
    [16] T. S. Yang, G. D. Chen, K. S. Chen, R. C. Hong, T. C. Chiu, C. D. Wen, C. H. Li, C. J. H., K. T. Chen, M. C. Lin, "Thermal analysis of a laser peeling technique for removing micro edge cracks of ultrathin glass substrates for web processing," Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, 2015.
    [17] A. Berenjian, and G. Whittleston, "History and manufacturing of glass." American Journal of Materials Science ,vol. 7, pp. 18-24, 2017.
    [18] S. S. Kistler, "Stresses in glass produced by nonuniform exchange of monovalent ions," Journal of the American Ceramic Society, vol. 45, pp. 59-68, 1962.
    [19] A. K. Varshneya, "Chemical strengthening of glass: Lessons learned and yet to be learned." International Journal of Applied Glass Science, vol. 1, pp. 131-42, 2010.
    [20] M. A. E. Leil, and A. Cooper, "Analysis of field‐assisted binary ion exchange." Journal of the American Ceramic Society, vol. 62, pp. 390-95, 1979.
    [21] K. J. Hsia, G. H. Maggard, and D. W. Daniel, "Sonic assisted strengthening of gate oxides," U.S. Patent No. 6,372,520, 2002.
    [22] P. Jannotti, G. Subhash, P. Ifju, P. K. Kreski, and A. K. Varshneya, "Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass." Journal of the European Ceramic Society,vol. 32, pp. 1551-59, 2012.
    [23] E. R. Michalik, "Method of scoring glass using a scoring wheel having an arcuate scoring surface." U.S. Patent No. 4,057,184. 8, Nov. 1977.
    [24] V. S. Kondratenko, "Method of splitting non-metallic materials," US Patent No. 5,609,284, Mar. 11, 1997.
    [25] V. S. Kondratenko, V. E. Borisovskiy, A. S. Naumov, and A. K. Zobov, "Optimizing the parameters of laser controlled thermocracking when cutting glass by a non-rectilinear contour." Optics and Photonics Journal, vol. 5, pp. 295, 2015.
    [26] C. H. Tsai, and C. J. Chen, "Application of iterative path revision technique for laser cutting with controlled fracture." Optics and lasers in Engineering, vol. 41, pp. 189-204, 2004.
    [27] J. Lopez, K. Mishchik, B. Chassagne, C. J. Leger, C. Honninger, E. Mottay, R. Kling, "Glass cutting using ultrashort pulsed bessel beams," International Congress on Applications of Lasers & Electro-Optics, 2015.
    [28] Rofin Inc., 雷射長光刀切割技術, https://www.rofin.com
    [29] C. Makabe, A. Murdani, K. Kuniyoshi, Y. Irei, and A. Saimoto, "Crack-growth arrest by redirecting crack growth by drilling stop holes and inserting pins into them." Engineering Failure Analysis,vol. 16, pp. 475-83, 2009.
    [30] 顏宏益, 應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析, 國立成功大學機械工程學系碩士論文, 2007.
    [31] 吳秉欣, 磁控濺鍍氮氧化矽與電漿輔助化學氣相沈積氮化矽薄膜材料機械性質檢測和力學分析及其在微系統之應用, 國立成功大學機械工程學系碩士論文, 2010.
    [32] 黃致凱, 壓痕技術於受快速熱退火與機械疲勞之電漿輔助化學氣相沉積氮化矽薄膜之破壞與介面檢測與分析, 國立成功大學機械工程學系碩士論文, 2011.
    [33] A. A. Volinsky, N. R. Moody, and W. W. Gerberich, "Interfacial toughness measurements for thin films on substrates," Acta Materialia, vol. 50, pp. 441-466, 2002.
    [34] R. Tandon, and D. J. Green, "Indentation behavior of ion‐exchanged glasses." Journal of the American Ceramic Society,vol. 73, pp. 970-77, 1990.
    [35] F. Dahmani, J. Lambropoulos, A. Schmid, S. Burns, and C. Pratt, "Nanoindentation technique for measuring residual stress field around a laser-induced crack in fused silica." Journal of materials science,vol. 33, pp. 4677-85, 1998.
    [36] D. Morris, S. Myers, and R. Cook, "Indentation crack initiation in ion-exchanged aluminosilicate glass." Journal of Materials Science,vol. 39, pp. 2399-410, 2004.
    [37] M. Michel, F. Serbena, and C. Lepienski, "Effect of temperature on hardness and indentation cracking of fused silica." Journal of non-crystalline solids,vol. 352, pp. 3550-55, 2006.
    [38] A. C. Fischer-Cripps, Nanoindentation, Spring-Verlag New York, Inc., 2002.
    [39] D. B. Marshall and B. R. Lawn, "Indentation of brittle materials, microindentation techniques in materials science and engineering," ASTM STP 889, pp. 26-46, 1986.
    [40] D. S. Harding, W. C. Oliver, and G. M. Pharr, "Cracking during nanoindentation and its use in the measurement of fracture toughness," MRS Bulletin, vol. 356, pp. 663-668, 1995.
    [41] M. T. Laugier, " New formula for indentation toughness in ceramics," Journal of Materials Science Letters, vol. 6, pp.355-356 ,1987.
    [42] D. Casellas, J. Caro, S. Molas, J. M. Prado and I. Valls, "Fracture toughness of carbides in tool steels evaluated by nanoindentation," Acta Materialia, vol. 55, pp. 4277-4286, 2007.
    [43] T. Y. Zhang, L. Q. Chen, and R. Fu, "Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture." Acta Materialia, vol. 47, pp. 3869-3878, 1999.
    [44] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
    [45] W.C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, 2004.
    [46] 康恒达, 洪钲杰, 陈永霖, "强化玻璃切割方法、薄膜制程、切割预置结构及切割件" China. Patent CN 102452789 A, 2010
    [47] 金十明股份有限公司,應力量測儀, http://www.gsb.com.tw/
    [48] 台灣中澤股份有限公司, 微小維克氏壓痕測試儀, http://www.tn-testing.com.tw/hardness-tester/FM-100e.html
    [49] 許瑞峰, 微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用, 國立成功大學機械系碩士論文, 2003。
    [50] R. C. Jaeger, Introduction to microelectronic fabrication, Prentice Hall, Inc., 1988.
    [51] A. Koike, S. Akiba, T. Sakagami, K. Hayashi, and S. Ito, "Difference of cracking behavior due to vickers indentation between physically and chemically tempered glasses." Journal of Non-Crystalline Solids,vol. 358, pp. 3438-44, 2012.
    [52] H. Lee, J. Lee, H. Choi, and J. Lee, "Selective stress relaxation on chemically strengthened glass sheets for conventional wheel cutting." Journal of the American Ceramic Society, vol. 96, pp. 2728-31, 2013.
    [53] J. Cha, K. Lee, Y. Lee, J. H. Rhee, and J. Lee, "Tempered glass cutting method and cutting apparatus," U.S. Patent Application No. 14/407,921, 2013.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE