簡易檢索 / 詳目顯示

研究生: 楊鎮嘉
Yang, Chen-Chia
論文名稱: 振動試驗應用於列車引致之房屋微振行為之研究
Experimental investigation of building vibrations induced by moving trains
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 85
中文關鍵詞: 房屋振動自然頻率主要頻率實驗列車懸臂樑台南科學園區
外文關鍵詞: Building vibration, Natural frequency, Dominant frequency, Experiment, Train, Cantilever beam, Southern Tainan Science Park
相關次數: 點閱:111下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今社會中,台灣高速鐵路已經成為一種方便的交通運輸系統。因此,高速鐵路所引起的房屋振動絕對需要做現地實驗來討論。在台南科學園區有鋼骨鋼筋混凝土建物和鋼筋混凝土建物,本文將對於不同型態建物受高鐵行車之影響加以說明。主要研究主題在火車引致之房屋振動,火車通過時會有列車主要頻率和建築物的自然頻率。當火車的主要頻率和房屋的自然頻率相近的時候,此時振動會有放大的效果,即為共振效應。因此研究主題也會在自然頻率和主要頻率對房屋的影響上做討論。除此之外,也會研究在列車通過時,素地及房屋最大振動值的比較,和高層房屋振動的特性。

    THSR (Taiwan High Speed Rail) is one of the convenient traffic systems in our life. Therefore, using the field experiment to discuss the behavior of building vibrations induced by the moving train is essential. In Southern Taiwan Science Park (STSP), there are steel reinforced concrete structures and concrete structures. The results in different structures will be illustrated in this thesis. This study primarily concentrates on the building vibration due to the moving train. If the train is passing through, the natural frequency will come from the building and the dominant frequency come from the train. Moreover, when the peak responses of the natural frequency and the dominant frequency are similar, the phenomenon of resonance occurs and the value of the vibration amplifies at the same time. Therefore, this study will instigate the effect of the natural frequency and the dominant frequency for moving high-speed trains. Besides, the comparison of the maximum train-induced vibration dB on the free field and building floors will be studied.

    Chapter 1 Introduction……………………………………………………….1 1.1 Background and propose…………………………………………...1 1.2 Literature review………………………………………………...…1 1.3 Brief account of research……………………………………….6 Chapter 2 Theory Illustration………………………………………………9 2.1 Introduction…………………………………………………………9 2.2 Fast Fourier Transform (FFT)……………………………………..9 2.3 One-third octave band method………………………….…………11 2.4 Dominant frequencies from the trainload…………………………14 Chapter 3 Introduction of the experimental procedures, equipments and data analyses 18 3.1 Introduction…………………………………………………..……18 3.2 The experimental equipments………………………………..……18 3.3 Introduction of the measurement program (DAQ_new)…..…….20 3.4 Post-processing of recording data…………………………...…..23 3.4.1 Rename the file of the recording data……………………….23 3.4.2 The post-processing programs………………………….…….23 3.4.3 The procedures of the experimental data analysis……..……25 Chapter 4 The structure behavior due to train-induced vibration……..37 4.1 Introduction…………………………………………………………37 4.2 The location and the description of the experiment………...…37 4.3 The experiment results……………………..……………….……39 4.3.1 Behavior of building vibration for case 1……..……….…39 4.3.2 Behavior of building vibration for case 2……………..….41 4.3.3 Behavior of building vibration for case 3…………...……43 4.3.4 Behavior of building vibration for case 4………………...44 4.3.5 Behavior of building vibration for case 5………………...46 4.4 Comparison of the maximum dB in the different floor…..………48 Chapter 5 Conclusions………………………………...………………………79 5.1 Conclusions…………………………………………………………79 5.2 Future work………………………………………………………...80 References…………………………………………………………………..…81

    [1]. M. Heckl, G. Hauck, R. Wettschureck Structure-borne sound and vibration from rail traffic. Journal Sound Vibration (1996); 193(1):175–84.
    [2]. K.H. Chua, T. Balendra, K.W. Lo. Groundborne vibrations due to trains in tunnels. Earthquake Engineering Structure Dynamics (1992); 21(5):445–60.
    [3]. H.H. Hung, J. Kuo, Y.B. Yang. Reduction of train-induced vibrations on adjacent buildings. Structure Engineering Mechanics (2001); 11:503–18.
    [4]. C. Madshus, A.M. Kaynia. “High-speed railway lines on soft ground: Dynamic behavior at critical train speed.” Journal Sound Vibration (2000), 231(3), 689-701.
    [5]. O. Hunaidi, W. Guan, J. Nicks. Building vibrations and dynamic pavement loads induced by transit buses. Soil Dynamics Earthquake Engineering (2000); 19(6):435–53.
    [6]. L. Auersch. “The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-speed lines.” Journal Sound Vibration (2005), 284(1-2), 103-132.
    [7]. K.W. Ngai, C.F. Ng Structure-borne noise and vibration of concrete box structure and rail viaduct. Journal Sound Vibration (2002); 255(2):281–97.
    [8]. T.X. Wu, D.J. Thompson, Vibration Analysis of Railway Track with Multiple Wheels on the Rail, Journal of Sound and Vibration 293 (1) (2001) 69-97.
    [9]. L. Fryba, Vibration of Solids and Structures under Moving Load, Thomas Telford, London, (1999).
    [10]. Y.B. Yang, C.L. Lin, J.D. Yau, D.W. Chang, Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings, Journal of Sound and Vibration 269 (1-2) (2004) 345-360.
    [11]. J.D. Yau, Y.B. Yang, Vertical accelerations of simple beams due to successive loads traveling at resonant speeds, Journal of Sound and Vibration 289 (1-2) (2006) 210-228.
    [12]. Y.B. Yang, J.D. Yau, L.C. Hsu, Vibration of simple beams due to trains moving at high speeds, Engineering Structures 19 (11) (1997) 936-944.
    [13]. O. Hunaidi, M. Tremblay, Traffic-induced building vibrations in Montreal, Canadian Journal of Civil Engineering 24 (5) (1997) 736-753.
    [14]. P. Clemente, D. Rinaldis, Protection of a monumental building against traffic-induced vibrations, Soil Dynamics and Earthquake Engineering 17 (5) (1998) 289-296.
    [15]. G. Lombaert, G. Degrande, D. Clouteau, Numerical modelling of free field traffic-induced vibrations, Soil Dynamics and Earthquake Engineering 19 (7) (2000) 473-488.
    [16]. G. Lombaert, G. Degrande, Experimental validation of a numerical prediction model for free field traffic induced vibrations by in situ experiments, Soil Dynamics and Earthquake Engineering 21 (6) (2001) 485-497.
    [17]. M. Schevenels, G. Degrande, G. Lombaert, The influence of the depth of the ground water table on free field road traffic-induced vibrations, International Journal for Numerical and Analytical Methods in Geomechanics 28 (5) (2004) 395-419.
    [18]. D. Clouteau, G. Degrande, G. Lombaert, Numerical modelling of traffic induced vibrations, Meccanica 36 (4) (2001) 401-420.
    [19]. M. Schevenels, G. Degrande, G. Lombaert, The influence of the depth of the ground water table on free field road traffic-induced vibrations, International Journal for Numerical and Analytical Methods in Geomechanics 28 (5) (2004) 395-419.
    [20]. H. Hao, T.C. Ang, J. Shen, Building vibration to traffic-induced ground motion, Soil Dynamics and Earthquake Engineering 19 (7)(2000) 473-488.
    [21]. H. Hao, T.C. Ang, Analytical modeling of traffic-induced ground vibrations, Journal of Engineering Mechanics-ASCE 124 (8) (1998) 921-928.
    [22]. S. Maeda, M. Morioka, Y. Yonekawa, et al. Experimental studies of subjective response to road traffic-induced building vibration, Industrial Health 36 (2) (1998) 112-119.
    [23]. J.F. Wang, C.C. Lin, B.L. Chen, Vibration suppression for high-speed railway bridges using tuned mass dampers, International Journal of Solids and Structures 40 (2) (2003) 465-491.
    [24]. J.Z. Li, M.B. Su, The resonant vibration for a simply supported girder bridge under high-speed trains, Journal of Sound and Vibration 224 (5) (1999) 897-915.
    [25]. S.H. Ju, Three-dimensional analyses of wave barriers for reduction of train-induced vibrations, Journal of Geotechnical and Geoenvironmental Engineering 130 (7) (2004) 740-748.
    [26]. J.D. Yau, Y.B. Yang, A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads, Engineering Structures 26 (12) (2004) 1795-1807.
    [27]. S.H. Ju, H.T. Lin, Resonance characteristics of high-speed trains passing simply supported bridges, Journal of Sound and Vibration 267 (5) (2003) 1127-1141.
    [28]. S.H. Ju, Finite element analysis of structure-borne vibration from high-speed train, Soil Dynamic and Earthquake Engineering 27 (3) (2007) 259-273.
    [29]. S.H. Ju, H.T. Lin, Analysis of train-induced vibrations and vibration reduction schemes above and below critical Rayleigh speeds by finite element method, Soil Dynamic and Earthquake Engineering 24 (12) (2004) 993-1002.
    [30]. S.H. Ju, H.T. Lin, T.K. Chen, Studying characteristics of train-induced ground vibrations adjacent to an elevated railway by field experiments, Accepted by Journal of Geotechnical and Geoenvironmental Engineering (2007).
    [31]. P. Remington, J. Webb, Estimation of Wheel/Rail Interaction Forces in the Contact Area due to Roughness, Journal of Sound and Vibration 193 (1) (1996) 83-102.
    [32]. Y. Suda, T. Miyamoto, N. Katoh, Active Controlled Rail Vehicles for Improved Curving Performance and Response to Track Irregularity, Vehicle System Dynamics 35 (2001) 23-40.
    [33]. F.T.K. Au, J.J. Wang, Y.K. Cheung, Impact Study of Cable-Stayed Railway Bridges with Random Rail Irregularities, Engineering Structures 24 (5) (2002) 529-541.
    [34]. T.X. Wu, D.J. Thompson, On The Parametric Excitation of The Wheel/Track System, Journal of Sound and Vibration 278 (4-5) (2004) 725-747.
    [35]. Y.S. Wu, Y.B. Yang, Steady-State Response and Riding Comfort of Trains Moving over a Series of Simply Supported Bridges, Engineering Structures 25 (2) (2003) 251-265.
    [36]. M.H. Kargarnovin, D. Younesian, D. Thompson, C. Jones, Ride Comfort of High-Speed Trains Travelling Over Railway Bridges, Vehicle System Dynamics 43 (3) (2005) 173-197.
    [37]. Y.T. Fan, W.F. Wu, Dynamic Analysis and Ride Quality Evaluation of Railway Vehicles - Numerical Simulation and Field Test Verification, Journal of Mechanics 22 (1) (2006) 1-11.
    [38]. A. Johansson, C. Andersson, Out-of-Round Railway Wheels - a Study of Wheel Polygonalization Through Simulation Of Three-Dimensional Wheel-Rail Interaction and Wear, Vehicle System Dynamics 43 (8) (2005) 539-559.
    [39]. J.W. Kwark, E.S. Choi, Y.J. Kim, B.S. Kim, S.I. Kim. “Dynamic behavior of two-span continuous concrete bridges under moving high-speed train.” Comput. Structure (2004), 82(4-5), 463-474.
    [40]. H. Takemiya. “Simulation of track-ground vibrations due to a high-speed train: the case of X-2000 at Ledsgard.” Journal Sound Vibration (2003), 261(3), 503-526.
    [41]. G. Lombaert, G. Degrande. “The experimental validation of a numerical model for the prediction of the vibrations in the free field produced by road traffic.” Journal Sound. Vibration (2003), 262(2), 309-331.
    [42]. 洪李陵,“結構動力學講義“,國立成功大學土木工程研究所,2008年。
    [43]. C.G. Gordon, “Generic Criteria for Vibration Sensitive Equipment”, Optics and Metrology 1619 71-75 (1991).
    [44]. 葉彥良,“列車行經路面之振動特性分析“,國立成功大學土木
    工程研究所碩士論文,2008年6月。
    [45]. 朱聖浩,“結構實驗講義“,國立成功大學土木工程研究所,2007
    年。
    [46]. 內政部營建署,建築物耐震設計規範及解說,第二章 靜力分析方法
    (2.6),2006年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE